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It is a common practice in statistical analysis to 
draw conclusions based on significance. P-values 
often reflect the probability of incorrectly 
concluding that a null hypothesized model is true; 
they do not provide information about other types 
of error that are also important for interpreting 
statistical results. Standard model selection criteria 
and test procedures are often inappropriate for 
comparing models with different numbers of 
random effects, due to constraints on the 
parameter space of the variance components. In 
this paper, we focused on a minimum Bayes factor 
proposed by Held and Ott (2018) and applied it to 
a balanced two way analysis of variance 
(ANOVA) with random effects under three cases 
namely: Case 1: both factors are fixed; Case 2: 
both factors are random; Case 3: factor A is fixed 
and factor B is random. We realized that in all the 
three cases, considered the Bayes factor indicates 
weak evidence against the null hypothesis of zero 
variability in the effects of the levels of the factors 
as well as the interactions. This result is due to the 
conservative nature of the minimum Bayes factor.    
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INTRODUCTION 
 A typical fixed-effect analysis of an experiment involves comparing 

treatment means to one another in an attempt to detect differences. In a 
random-effects model, the treatment levels themselves are a random sample drawn 
from a larger population of treatment levels. In the latter, the objective of the 
researcher is to extend the conclusions based on a sample of treatment levels to 
all treatment levels in the population. In fact, the null hypothesis of random-effects 
ANOVA is quite different from its fixed-effects counterpart.  

Statistical analysis is often used to reason about scientific questions 
based on a data sample, with the goal of determining “which parameter values 
are supported by the data and which are not” (Hoenig and Heisey, 2001). P-
values been the most commonly used tool to measure evidence against a 
hypothesis or hypothesized model are often incorrectly viewed as an error 
probability for rejection of the hypothesis or, even worse, as the posterior 
probability that the hypothesis is true. This difficulty in interpretation of p-
values has been highlighted in many articles, (See Sellke,Bayarriand Berger, 
2001)  
The p-value quantifies the discrepancy between the data and a null hypothesis 
of interest, usually the assumption of no difference or no effect.  

A Bayesian approach allows the calibration of p-values by transforming 
them to direct measures of the evidence against the null hypothesis; it also avail 
us an insight into how the data supports the alternative hypothesis.  A p-value 
is computed under the assumption that the null hypothesis is true, so it is 
conditional on null hypothesis. It does not allow for conclusions about the 
probability of null hypothesis given the data, which is usually of primary 
interest.  

 
THEORETICAL REVIEW 

The Bayes factor directly quantifies whether the data have increased or 
decreased the odds of the null hypothesis. A better approach than categorizing 
a p-value is thus to transform a p-value to a Bayes factor or a lower bound on a 
Bayes factor, a so-called minimum Bayes factor (Goodman 1999). But many 
such ways have been proposed to calibrate p-values, and there is currently no 
consensus on how p-values should be transformed to Bayes factors. 

The Bayes factor (or its logarithm) is therefore often referred to as the 
strength of evidence or weight of evidence (Bernardo and Smith 2000).  Several 
Bayes factors have been proposed over time for Student t test, Analysis of 
Variance (ANOVA) among others. Some of the proposed Bayes factors are 
Bayesian Information Criterion (BIC)-Based (Wagenmakers, 2007; Masson, 2011; 
Faulkenberry, 2018), while some other Bayes factors are P-value based 
(Sellke,Bayarriand Berger, 2001; Held &Ott, 2018). In this article, we focused on 
the Bayes factor proposed by Held &Ott (2018) and applied it to a balanced two 
way ANOVA with random effects model. Evidence against a point null 
hypothesis was provided by small Bayes factors , such that Bayes 

factors lie in the same range as p-values, which facilitates comparisons. To 
categorize such Bayes factors, Held &Ott (2016) provided a six-grade scale See 
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(Table 2.1), which was proposed as a compromise of the grades proposed by 
Jeffreys (1961) and Goodman (1999). The Held &Ott (2018) minimum Bayes 
factor is smaller than all the other minimum Bayes factors, even smaller than 
the Goodman bound. 
 
METHODOLOGY 
Two Way Anova With Random Effects 

The balanced ANOVA model with two random effects is given by: 

ijkijjiijkY   )(         mi ,...,2,1 ; nj ,...,2,1   and 

pk ,...,2,1 ………(2.1) 

where   

             

 

 

 

 

                

The following assumptions are made: 

               

 

 

 

 

The covariance structure of the response is given by: 

       

  12
11, iiYYCov

jkiijk   ……………………………………………………….…(2.2) 

         

         

  12
11, jjYYCov

kijijk   ………………………………………………………..…(2.3) 
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  1222
1, kkYYCov

ijkijk    ……………………………………….(2.4) 

  0, 111 
kjiijk YYCov ; 1ii  , 1jj  , 1kk  …………………………………….(2.5) 

In such a balanced variance components model (2.1), Bayesians are often 

interested in evaluating whether the random effects should be included; this is 

equivalent to testing the following null hypotheses: 

0: 2

01 H  against 

0: 2

11 H …………………………………………………...(2.6 0: 2

02 H  

against 0: 2

12 H   ………………………………………………....(2.7)      

0: 2

03 H  against 0: 2

1313 H  ………….…………………………………….(2.8) 

The frequentist approach to testing the hypotheses stated above is summarized 

in Tables (2.1), (2.2) and (2.3) below: 

Table 2. Summary Table For Two Way ANOVA With Both Factors Fixed 

Source 
of 

Variatio
n 

Degree 
of 

Freedo
m (DF) 

Sum of Squares (SS) Mean 
Squares (MS) 

F-
Ratio 

P-
val
ue  

Factor A  
  

 

 

 

Factor B  
   

 

Interacti
on AB 

(

 
 

  
 

Error   
 

  

TOTAL  

 

   

See Gupta (2011) 

Two  Way Anova Model With Two Random Effects 
When models include random effects, the Expected Mean Squares will 

often differ from the same model with fixed effects. In most cases, this will 
affect how F-tests are performed, and the distribution of the F-statistic and its 
degrees of freedom, James (2013) 
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Table 3. Summary Table For ANOVA With Two Random Effects 

Source 
of 

Variatio
n 

Degree 
of 

Freedo
m (DF) 

Sum of Squares (SS) Mean 
Squares (MS) 

F-
Ratio 

P-
valu

e  

Factor A  
  

 

 

 

Factor B  
   

 

Interacti
on AB 

(

 
 

  
 

Error   
 

  

TOTAL  

 

   

 

See James (2013) 

Two Way Anova Model With Fixed And Random Effects 

The balanced two way ANOVA model with fixed and random effects is given 

by: 

   ijkijjiijkY        ;,...,2,1 mi   nj ,...,2,1  and  

pk ,...,2,1 ………..(2.9) 

  where  

iidijk ~  2,0 N  , Random factor B: iidj ~  2,0 N  and  Fixed factor A 

:



m

i

i

1

0 ...(2.10) 

Interaction effect   iidij ~  






  21
,0 

m

m
N  subject to the restriction  

 

 














12

,

1

1
)()(

0

1 ii
m

Cov
jiij

m

i

ij




…………………………………………….(2.11) 
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and ,ijk  j  and  ij  are pairwise independent 

1.   iijkYE   …………………………………………………………….(2.12) 

2. Var   222 1
 

m

m
Yijk


 …………………………………………..(2.13) 

The covariance structure of the response is given by: 

     

  122 1
' 11 ii

m
YYCov

jkiijk    ………………………..…………………..(2.14) 

     

  12
11' jjyYCov

kijijk   ……………………………………………………...(2.15)  

      

  122 1
' 1 kk

m

m
yYCov

kijijk 


   ………...………………..….(2.16) 

        0' 111 
kjiijk yYCov ; 

111 ,, kkjjii  ……………………………………………..(2.17) 

 

Table 3. Summary Table For Two Way ANOVA With Fixed and Random 

Effects 

Source 
of 

Variatio
n 

Degree 
of 

Freedo
m (DF) 

Sum of Squares (SS) Mean 
Squares (MS) 

F-
Ratio 

P-
valu

e  

Factor A  
  

 

 

 

Factor B  
   

 

Interacti
on AB 

(

 
 

  
 

Error   
 

  

TOTAL  

 

   

James (2013) 
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P-Value-Based Bayes Factor Proposed Held And Ott (2018) 

The commonly used calibration ( , proposed by Sellke et al. (2001), 

depends directly on the p-value p, thus: 

min BF(p) = 




1

log ppe e
          

otherwise

epfor 1
………….………………………….(2.18)                                    

A simple derivation of Equation (2.18) assumes that under a point null 
hypothesis , an exact  is uniformly distributed on the unit 

interval. Under the alternative hypothesis, small p-values are expected, so the 
class of beta prior distributions  with monotonically decreasing density 

functions  is considered. 

The minimum Bayes factor (Equation 2.18) can then be derived as described by 
Sellkeet al. (2001) and Held &Ott (2016), using the maximum likelihood estimate  

 







 1,

)(log

1
min

p
MLE

e

ML ……………………………………………….….(2.19) 

Sellke et al. (2001) also presented an alternative derivation of Equation (2.18), in 
which one does not have to assume the beta class for the p-value under the 
alternative hypothesis ( ). Held (2016) noted that Equation (2.18) can also be 

derived as a test-based Bayes factor under the g-prior if has dimension 2 and 

the sample size is large. The calibration given by Equation (2.18) is always 
smaller than the local normal alternatives bound (See Held and Ott, 2018) and 
approximately equal to the lower bound in the more general class of all local 
alternatives, Sellkeet al. (2001). 
The beta distribution  with  has prior sample size , so 

it is always quite uninformative. Therefore,  will be relatively flat, 

and the minimum Bayes factor  
min BF(p) = 

 MLHpf 1/

1
………………………..………………………………………..(2.20) 

 
 will be relatively large. However, this is not the only class of beta priors with 
monotonically decreasing density functions. An alternative, which to our 
knowledge has not yet been discussed in the literature, that is class of beta 
distributions  with . 

A beta distribution from this class has prior sample size , so the 

likelihood under the alternative can take larger values than for the above 
prior. Calculus shows that in this setting,  

MLE of k is 










 1,

)1(log

1
maxˆ

p
K

e

ML ……………………………………………….…(2.21) 
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leading to the minimum Bayes factor 

 min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
……………………(2.22) 

This is similar to the  calibration, but with  replaced by 

           pq 1  

………………………..…………………………………………………….(2.23) 

so we call this the calibration. Note that for small enough  we can 

obtain the simple approximate formula  based on the 

approximation . 

It turns out that Equation (2.22) is a much lower bound compared with that 
proposed by Sellkeet al. (2001). For p-values less than 0.1, it is even smaller than 
the Goodman approach(Goodman, 2016). This is due to a large (and 
unbounded) prior sample size for small , in contrast to the prior sample size of 

the  calibration, which cannot be larger than 2. 

However, Equation (2.22) provides a sharp lower bound on Bayes factors based 
on g-priors of any dimension d, even if the sample size is very small. For 
reasonably large sample sizes, however, the −e q log q calibration will be too 
conservative, (Held and Ott, 2018). 
 

Table 4. Categorization of Bayes Factor  into levels of evidence against 

the null hypothesis (  

Bayes Factor ( ) Strength of Evidence Against the null 
hypothesis (  

 

Weak 

 

Moderate 

 

Substantial 

 

Strong 

 

Very Strong 

 

Decisive  

Held and Ott (2016) 
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The study was carried out in the following steps: 
STEPS: 

1. For each case (1, 2 and 3), data was simulated for the set, m, n and 
p combination. 

2. The frequentist Two Way ANOVA table summary was computed 
using the simulated data for each case and the corresponding P-
values obtained. 

3. The Minimum Bayes factor proposed by Held and Ott (2018) was 
computed using results in 2 above. 

4. The results was discussed 
 

DATA PRESENTATION AND ANALYSIS 
Data Presentation 

Data sets were simulated using the native functions implemented in the 
R software for statistical computing (version 3.4.0 for Windows, R Core Team, 
2017) from a standard normal population . Simulation was 

generated using random seed sets to simplify replication. The random sample 
generated contains 125 random numbers clustered in 25 cells (5 rows and 5 
columns). Each cell contains 5 random numbers. This design is similar to a 
setup of the regular two way ANOVA with five replicates per cell. Table 3.1 
below was generated from the process above. 

Table 5. Simulated Data` 

 FACTOR B 

F
A

C
T

O
R

 A
 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Level 

1 

-0.90, 0.18, 
1.59, -1.13, 
-0.08 

0.13, 0.71, 
-0.24, 
1.98, -0.14 

0.42, 0.98, -
0.39, -1.04, 
1.78 

-2.31, 0.88, 
0.04, 1.01, 
0.43 

2.09, -1.20, 
1.59, 1.95, 
0.00 

Level 

2 

-2.45, 0.48, 
-0.60, 0.79, 
0.29 

0.74, 0.32, 
1.08, -
0.28, -0.78 

-0.60, -1.73, 
-0.90, -0.56, 
-0.25 

-0.38, -
1.96, -0.84, 
1.90, 0.62 

1.99, -0.31, -
0.09, -0.18, -
1.20 

Level 
3 

-0.84, 2.07, 
-0.56, 1.28, 
-1.05 

-1.97, -
0.32, 0.94, 
1.14, 1.67 

-1.79, 2.03, -
0.70, 0.16, 
0.51 

-0.82, -
2.00, -0.48, 
0.08, -0.90 

-0.92, 0.33, -
0.14, 0.43, -
0.05 

Level 
4 

-0.91, 1.30, 
0.77, 1.05, -
1.41 

1.00, -
1.70, -
0.53, -
1.37, -2.21 

1.82, -0.65, -
0.28,  -0.39, 
0.39 

1.60, 1.68, 
-1.18, -
1.36,  -1.51 

-1.25,  1.96,  
0.01,  -0.84,  -
0.86 

Level 
5 

1.07,  0.26,  
-0.31,  -
0.75,  -0.35 

2.05, 0.94, 
2.01, -
0.42, 0.56 

-1.03,  -0.25,  
0.47,  1.36,  -
0.78 

0.46,  1.23,  
1.15,  0.11,  
-1.04 

1.24, 0.14,  
1.71,  -0.43,  -
0.86 

Source: Simulation Result 
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From table 5 above, 
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DATA ANALYSIS 

Case 1: Both factors (i.e. factors A and B) are fixed 

Table 6. ANOVA Summary Table for Case 1 

Source 
of 

Variatio
n 

Degree of 
Freedom 

(DF) 

Sum of 
Squares 

(SS) 

Mean Squares (MS) F-Ratio P-
Valu

es 

Factor A   
 

 

 

 
0.245
5 

Factor B   
  

 
0.817
0 

Interacti
on AB 

(

 

 
  

 
0.807
4 

Error   
 

  

TOTAL      
   

Hypothesis Testing for Case 1: Both factors (i.e. Factors A and B) are fixed 

To test the hypothesis of interest, we obtained  the minimum Bayes factor for 

each of the hypothesis using the p-values already computed in the table above: 

2

01 : H  against 

0: 2

11 H ……………………………………………………….(3.1) 

The Held and Ott(2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 

Since Pvalue = 0.2545 which is less than p = 1- e-1 = 1 – (2.718)-1 = 0.6321 
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Table 7.  Categorization of Bayes Factor  into levels of evidence against 

the null hypothesis (  

Bayes Factor ( ) Strength of Evidence Against the null 
hypothesis (  

 

Weak 

 

Moderate 

 

Substantial 

 

Strong 

 

Very Strong 

 

Decisive  

Held and Ott (2016) 

The Bayes factor , signifies that the data has a weak 

evidence against the null hypothesis of no variability in the five levels of factor 
A stated in equation (3.1). This can be seen in Table 3.3. 

 
To test the hypothesis below, 

     0: 2

02 H  against 

0: 2

12 H ……………………………………………………..…(3.2) 

Held and Ott (2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 

Since Pvalue = 0.8170 is greater than p = 1- e-1 = 1 – (2.718)-1 = 0.6321 

Hence,  

The Bayes factor , signifies that the data has a weak evidence against 

the null hypothesis of no variability in the five levels of factor B stated in 
equation (3.2). This can be seen in Table 7. 
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To test the hypothesis below 

0: 2

03 H  against 

0: 2

13 H …………………………………………………..(3.3) 

Held and Ott (2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 
 Since Pvalue = 0.8170 is greater than p = 1- e-1 = 1 – (2.718)-1 = 0.6321, min BF(p) 
= 1 
The Bayes factor , signifies that the data has a weak evidence against 

the null hypothesis of no variability in the interaction effects of factors A and B 
stated in equation (3.3). This can be seen in Table 7. 

 

DISCUSSION FOR CASE 1 (BOTH FACTORS FIXED) 
In all the three hypothesis examined above, the data indicated a weak 

evidence against the null hypothesis stated in equations 3.1, 3.2 and 3.3.  This 
shows that the data strongly supports the null hypothesis of no variability in the 
effects of the levels of the factors and in the interaction effects. This result 
corresponds to the frequentist conclusion based on the p-values; in that all the p-
values are greater than 0.05 significance levels. This shows that for a two model 
with fixed effects, the Bayesian as well as the frequentist conclusions are not 
differing. 
Case 2: Both Factors Are Random (i.e. two random effects)  

Table 8. ANOVA Summary Table for Case 2 

Source 
of 

Variatio
n 

Degree of 
Freedom 

(DF) 

Sum of 
Squares 

(SS) 

Mean Squares (MS) F-Ratio P-
Valu

es 

Factor 
A 

  
 

 

 

 
0.138
0 

Factor B   
  

 
0.688
1 

Interacti
on AB 

(5-1)(5-1)=16  

  

 
0.807
4 

Error   

 

  

TOTAL      

8.Hypothesis Testing for Case 2: Both factors (i.e. Factors A and B) are 

Random 
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To test the hypothesis of interest, we obtain the Held and Ott(2018) 

minimumBayes factor for each of the hypothesis using the  already 

computed in the table above: 

2

01 : H  against 

0: 2

11 H ………………………………………………………..…(3.4) 

Held and Ott (2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 

Since Pvalue = 0.1380 which is greater than p = 1- e-1 = 1 – (2.718)-1 = 0.6321, min 

BF(p) = 1 

 

 

Table 9.  Categorization of Bayes Factor  into levels of evidence against 

the null hypothesis (  

Bayes Factor ( ) Strength of Evidence Against the null 
hypothesis (  

 

Weak 

 

Moderate 

 

Substantial 

 

Strong 

 

Very Strong 

 

Decisive  

Held and Ott (2016) 

The Bayes factor , signifies that the data has a weak 

evidence against the null hypothesis of no variability in the five levels of factor 
A stated in equation (3.4). This can be seen in Table 3.5.  
To test the two (2) hypotheses below,  
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           0: 2

02 H  against 

0: 2

12 H ……………………………………………………(3.5) 

           0: 2

03 H  against 

0: 2

13 H …………………………………………………..(3.6)   

The Held and Ott(2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 

we can see from Table 3.4 that the respective Pvalue (0.6881 and 0.8074) are all 
greater than p = 1- e-1 = 1 – (2.718)-1 = 0.6321. Hence, min BF(p) = 1 for both 
hypotheses.   
The Bayes factor , signifies that the data has a weak evidence against 

the null hypothesis of no variability in levels of factor B (stated in equation 
(3.5)) and also the interaction effects of factors A and B stated in equation (3.6). 
This can be seen in Table 3.5 above. 
 

DISCUSSION FOR CASE 2 (Two Random Effects) 

In testing the three (3) hypotheses stated in equations (3.4), (3.5) and 

(3.6), we realized that the data shows a weak evidence against of the null 

hypothesis of no variability in the effects of the levels of the factors A and B as 

well as the effects their interactions. A side examination of a frequentist 

conclusion from the p-values at a 5% significance level,indicates that the null 

hypothesis of zero treatment effect stated in equations (3.4), (3.5) and (3.6) 

ought not to be rejected. Hence, the Bayesian as well as the frequentist 

conclusions are not differing. 

3.2.7 Case 3: Factor A is Fixed and Factor B is Random (i.e. typical of a mixed 

effect model)  
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Table 10. ANOVA Summary Table for Case 3 

Source 
of 

Variati
on 

Degree of 
Freedom 

(DF) 

Sum of 
Squares 

(SS) 

Mean Squares (MS) F-Ratio P-
Val
ue 

Factor 
A 

  
 

 

 

 

 

Factor B   
  

 

 

Interact
ion AB 

(5-1)(5-1) = 
16 

 
  

 

 

Error   
 
  

TOTAL      
 

10. Hypothesis Testing for Case 2: Both factors (i.e. Factors A and B) are 

Random 

To test the hypothesis of interest, we obtain the Held and Ott (2018) minimum 
Bayes factor for each of the hypothesis using the p-values already computed in 
the Table 3.6above: 

2

01 : H  against 

0: 2

11 H ………………..…………………………………………...(3.7) 

Held and Ott(2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 

  Since Pvalue = 0.1380 which is greater than p = 1- e-1 = 1 – (2.718)-1 = 0.6321 
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Table 11. Categorization of Bayes Factor  into levels of evidence against 

the null hypothesis (  

Bayes Factor ( ) Strength of Evidence Against the null hypothesis (  

 

Weak 

 

Moderate 

 

Substantial 

 

Strong 

 

Very Strong 

 

Decisive  

Held and Ott (2016) 

The Bayes factor , signifies that the data has a weak evidence 

against the null hypothesis of no variability in the five levels of factor A stated 
in equation (3.7). This can be seen in Table 3.7.  
To test the two (2) hypotheses below, 

          0: 2

02 H  against 

0: 2

12 H ……………………………………………………...(3.8) 

          0: 2

03 H  against 

0: 2

13 H ………………………………………………….(3.9) 

     Held and Ott (2018) minimum Bayes factor is given by: 

min BF(p) = 


 

1

)1(log)1( ppe e
          

otherwise

epfor 11 
See equation 

(2.22) 

we can see from Table 11.  that the respective Pvalues (0.8170 and 0.8074) are all 

greater than  

  p = 1- e-1 = 1 – (2.718)-1 = 0.6321. Hence, min BF(p) =1 for both  hypotheses.  

The Bayes factor , signifies that the data has a weak evidence against 

the null hypothesis of no variability in levels of factor B (stated in equation 

(3.8)) and also the interaction effects of factors A and B stated in equation (3.9). 

This can be seen in Table 3.7above. 
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DISCUSSION FOR CASE 3 (Factor A is Fixed and Factor B is Random) 

In testing the three (3) hypotheses stated in equations (3.7), (3.8) and 
(3.9), we realized that the data shows a weak evidence against of the null 
hypothesis of no variability in the effects of the levels of the factors A and B as 
well as the effects of their interactions. A side examination of a frequentist 
conclusion from the p-values at a 5% significance level, indicates that the null 
hypothesis of zero treatment effect stated in equations (3.7), (3.8) and (3.9) will 
not to be rejected. Hence, the Bayesian as well as the frequentist conclusions are 
not differing. 

CONCLUSIONS AND RECOMMENDATIONS 

In all the three cases studied in this paper, it is evident that the Held and 
Ott (2018) minimum Bayes factor is conservative. In fact, at no point did the 
data exhibit strong evidence against the null hypothesized model of zero 
variability. We realized that the calibrated p-value based minimum Bayes 
factors do not differ in conclusions from those of the frequentist. When the 
same data was subjected to the Faulkenberry (2018) Bayes factor, the 
conclusions for the fixed effects differed significantly from those of the random 
effects (See Egburonu and Abidoye, 2018); but the conservative nature of the 
minimum Bayes factor overcame this difference. The minimum Bayes factor 
provides lesser values for Bayes factor when compared to the Prior sensitive 
and BIC based Bayes factors proposed by Wang and Sun (2011) and 
Faulkenberry (2018) respectively. 

 
 FURTHER STUDY 

This research still has limitations so that further research is still needed 
on this topic.
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