Potential Solar Power Sources at the Indonesian Border Post Papua New Guinea
DOI:
https://doi.org/10.55927/fjmr.v3i12.12148Keywords:
Borderlands, Power Generation, Renewable Energy, POWERAbstract
The border post serves as a means of supervision, security, and community services in the border area between Indonesia and Papua New Guinea. Electricity needs have not been met due to limitations both in terms of economic and geographical conditions. To overcome this problem, the method is measure the potential of solar power sources in the area using GIS data from NASA Prediction of Worldwide Energy Resources (POWER) which provides data on solar radiation and temperature in a 5-year period (2018-2022). So that the potential for solar electricity is obtained, which is 4.974 kWh/m2 /day, which means that it has the potential for the construction of solar power plants.
Downloads
References
Al Garni, H. Z., & Awasthi, A. (2017). Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy, 206 (September), 1225–1240. https://doi.org/10.1016/j.apenergy.2017.10.024
Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied Thermal Engineering, 29(2–3), 324–328. https://doi.org/10.1016/j.applthermaleng.2008.02.029
Almasoud, A. H., & Gandayh, H. M. (2015). Future of solar energy in Saudi Arabia. Journal of King Saud University - Engineering Sciences, 27(2), 153–157. https://doi.org/10.1016/j.jksues.2014.03.007
Blaabjerg, F., Chen, Z., & Kjaer, S. B. (2004). Power electronics as efficient interface in dispersed power generation systems. IEEE Transactions on Power Electronics, 19(5), 1184–1194. https://doi.org/10.1109/TPEL.2004.833453
Braga, D., Chicco, G., Golovanov, N., & Porumb, R. (2020). Long-Term Solar Irradiance Forecasting. Problems of the Regional Energetics, 45(45), 94–109. https://doi.org/10.5281/zenodo.3713424
Buhaug, H., & Gates, S. (2002). The geography of civil war. Journal of Peace Research, 39(4), 417–433. https://doi.org/10.1177/0022343302039004003
Choi, Y., Suh, J., & Kim, S. M. (2019). GIS-based solar radiation mapping, site evaluation, and potential assessment: A review. Applied Sciences (Switzerland), 9(9). https://doi.org/10.3390/app9091960
Gil, A., Medrano, M., Martorell, I., Lázaro, A., Dolado, P., Zalba, B., & Cabeza, L. F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), 31–55. https://doi.org/10.1016/j.rser.2009.07.035
Grätzel, M. (2005). Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 44(20), 6841–6851. https://doi.org/10.1021/ic0508371
Harrison, A. W. (1991). Directional sky luminance versus cloud cover and solar position. Solar Energy, 46(1), 13–19. https://doi.org/10.1016/0038-092X(91)90102-3
Harrison, A. W., & Coombes, C. A. (1988). An opaque cloud cover model of sky short wavelength radiance. Solar Energy, 41(4), 387–392. https://doi.org/10.1016/0038-092X(88)90035-7
Heathcote, S. (2021). Secession, self-determination and territorial disagreements: Sovereignty claims in the contemporary South Pacific. Leiden Journal of International Law, 34(3), 653–680. https://doi.org/10.1017/S0922156521000236
Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews, 43(22), 7520–7535. https://doi.org/10.1039/c3cs60378d
Kalogirou, S. A. (2004). Solar thermal collectors and applications. In Progress in Energy and Combustion Science (Vol. 30, Issue 3). https://doi.org/10.1016/j.pecs.2004.02.001
Lewis, N. S., & Nocera, D. G. (2007). Powering the planet: Chemical challenges in solar energy utilization (Proceedings of the National Academy of Science of the United States of America (2006) 103, 43, (15729-15735) DOI:10.1073/pnas.0603395103). Proceedings of the National Academy of Sciences of the United States of America, 104(50), 20142. https://doi.org/10.1073/pnas.0710559104
Liu, H. D., Lin, C. H., Pai, K. J., & Lin, Y. L. (2018). A novel photovoltaic system control strategies for improving hill climbing algorithm efficiencies in consideration of radian and load effect. Energy Conversion and Management, 165(March), 815–826. https://doi.org/10.1016/j.enconman.2018.03.081
Metherall, N., De Fretes, D. R., Mandibondibo, F., & Caucau, T. (2022). Assessing the Development Impact of the Sota Border Post Connecting Indonesia and Papua New Guinea. Papua Journal of Diplomacy and International Relations, 2(2), 95–122. https://doi.org/10.31957/pjdir.v2i2.2209
Mytrofanov, O., & Proskurin, A. (2020). Analysis of Efficiency of Rotary Piston Engines Use at Power Plants for Surplus Electrical Energy Accumulation. Problems of the Regional Energetics, 48(48), 58–68. https://doi.org/10.5281/zenodo.4317046
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 15(3), 1513–1524. https://doi.org/10.1016/j.rser.2010.11.037
Permendagri. (2007). Peraturan Menteri Dalam Negeri Nomor 18 Tahun 2007 Tentang Standardisasi Sarana, Prasarana Dan Pelayanan Lintas Batas Antar Negara. 1–6.
Sathish, C., Chidambaram, I. A., & Manikandan, M. (2023). Hybrid Renewable Energy System with High Gain Modified Z-Source Boost Converter for Grid-Tied Applications. Problems of the Regional Energetics, 57(1), 39–54. https://doi.org/10.52254/1857-0070.2023.1-57.04
Sathish, C., Chidambram, I. A., & Manikandan, M. (2022). Reactive Power Compensation in a Hybrid Renewable Energy System through Fuzzy Based Boost Converter. Problems of the Regional Energetics, 53(1), 10–26. https://doi.org/10.52254/1857-0070.2022.1-53.02
Schistad Solberg, A. H., Taxt, T., & Jain, A. K. (1996). A markov random field model for classification of multisource satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 100–113. https://doi.org/10.1109/36.481897
Shiva Kumar, B., & Sudhakar, K. (2015). Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports, 1, 184–192. https://doi.org/10.1016/j.egyr.2015.10.001
Simamora, P., & Tumiwa, F. (2019). Apa yang Membuat Biaya Pembangkitan PLTS Skala Utilitas Bertambah Murah? Iesr, Juli 2019, 1–8. http://iesr.or.id/v2/publikasi_file/IESR-Briefing-Paper-Biaya-Pembangkitan-PLTS.pdf
Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614–624. https://doi.org/10.1016/j.solener.2008.10.008
Tüfekci, P. (2014). Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. International Journal of Electrical Power and Energy Systems, 60, 126–140. https://doi.org/10.1016/j.ijepes.2014.02.027
Zhang, H. L., Baeyens, J., Degrève, J., & Cacères, G. (2013). Concentrated solar power plants: Review and design methodology. Renewable and Sustainable Energy Reviews, 22, 466–481. https://doi.org/10.1016/j.rser.2013.01.032
Zhou, D. K., Larar, A. M., Liu, X., Smith, W. L., Strow, L. L., Yang, P., Schlüssel, P., & Calbet, X. (2011). Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Transactions on Geoscience and Remote Sensing, 49(4), 1277–1290. https://doi.org/10.1109/TGRS.2010.2051036
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Luwis Surani Haloho, Sukendra Martha, Asep Adang Supriyadi, Annisa Harum Sadewa
This work is licensed under a Creative Commons Attribution 4.0 International License.