Design of a Stock Forecasting Dashboard using Python-Streamlit and FB Prophet with AI

Authors

  • Edra Arkananta Gultom State Polytechnic of Malang
  • Kartika Dewi Sri Susilowati State Polytechnic of Malang
  • Anik Kusmintarti State Polytechnic of Malang

DOI:

https://doi.org/10.55927/fjst.v3i11.12216

Keywords:

Stock Forecasting, Dashboard Design, Artificial Intelligence, Machine Learning

Abstract

This research aims to develop a stock price forecasting application using time series analysis with the Prophet model. The application retrieves historical stock data from Yahoo Finance (2015–present) for Indonesian stocks, which is then processed and analyzed to predict future prices. The study integrates yfinance for data collection, Prophet for forecasting, and Plotly for visualizing the results. The application allows users to select stocks and customize prediction periods (1–4 years). The findings indicate that while the model provides useful short-term predictions, its accuracy is limited by market volatility and external factors. This tool can support decision-making but should be used in conjunction with other forecasting methods.

Downloads

Download data is not yet available.

References

Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep learning for stock prediction using numerical and textual information. In Computer and Information Science (ICIS), IEEE/ACIS 15th International Conference on (pp. 1-6). IEEE. https://doi.org/10.1109/ICIS.2016.19

Boser, B. E., Guyon, I., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. The Fifth Annual Workshop of Computational Learning Theory, 5, 144-152. Pittsburgh, ACM.

Cavalcante, R.C., Brasileiro, R.C., Souza, V.L.F., Nobrega, J.P., & Oliveira, A.L.I. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194-211.

Chen, W., Zhang, Y., Yeo, C.K., Lau, C.T., & Lee, B.S. (2017). Stock market prediction using neural network through news on online social networks. In Smart Cities Conference (ISC2), 2017 International (pp. 11-12). IEEE.

Fama, E. F. (1965). The behavior of stock-market prices. Journal of Business, 38(1), 34-105. https://doi.org/10.1086/294743

Freund, Y., & Schapire, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119-139.

Fung, G. P. C., Yu, J. X., & Lam, W. (2002). News sensitive stock trend prediction. In Advances in Knowledge Discovery and Data Mining (pp. 481-493). Springer Berlin Heidelberg.

Hinton, G. E., et al. (2013). "Learning representations by back-propagating errors." Nature, 323(6088), 533-536. https://doi.org/10.1038/323533a0

Hsieh, T., Hsiao, H., & Yeh, W. (2011). Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm. Applied Soft Computing, 11(2), 2510-2525.

Jain, A., Menon, M.N., & Chandra, S. (2015). Sales Forecasting for Retail Chains. Computing Science, India.

Maciel, L.S., & Ballini, R. (2008). Design a neural network for time series financial forecasting: Accuracy and robustness analysis. Instituto de Economia, Universidade Estadual de Campinas, Sao Paulo-Brasil.

Malkiel, B. G. (1973). A random walk down Wall Street. W.W. Norton & Company.

Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91.

Palangi, H., Ward, R., & Deng, L. (2016). Distributed compressive sensing: A deep learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518. https://doi.org/10.1109/TSP.2016.2584962

Persio, L., & Honchar, O. (2016). Artificial neural networks architectures for stock price prediction: comparisons and applications. International Journal of Circuits, Systems and Signal Processing, 10, 403–413.

Sawon, M., & Hosen, M. (2016). Prediction on large scale data using extreme gradient boosting. BSc Thesis Report, Computer Science and Engineering, BRAC University, Dhaka, Bangladesh.

Sidik, M. (2019). Perancangan dan Pengembangan E-commerce dengan Metode Research and Development. Jurnal Teknik Informatika UNIKA Santo Thomas, 4(1), 99-107.

Solichin. (2021). Pengembangan dan Pengujian Aplikasi Pemesanan Makanan berbasis Website Menggunakan Metode Waterfall. Journal of Computer Science an Engineering (JCSE), 2(1), 40–50.

Tanigawa, T., & Kamijo, K. (1990). Stock price pattern recognition: A recurrent neural network approach. Proceedings of the 1990 IJCNN International Joint Conference on Neural Networks, 215-221. https://doi.org/10.1109/IJCNN.1990.137572

Tay, F.E.H., & Cao, L. (2001). Application of Support Vector Machines in Financial Time Series Forecasting. Omega, 29(4), 309-317.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.

Wang, B., Huang, H., & Wang, X. (2012). A novel text mining approach to financial time series forecasting. Neurocomputing, 83(6), 136-145.

Wilson, R.L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545-557.

Downloads

Published

2024-11-21

How to Cite

Gultom, E. A., Susilowati, K. D. S., & Kusmintarti, A. (2024). Design of a Stock Forecasting Dashboard using Python-Streamlit and FB Prophet with AI. Formosa Journal of Science and Technology, 3(11), 2445–2464. https://doi.org/10.55927/fjst.v3i11.12216