

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

279
(

DOI prefix: https://doi.org/10.55927/ijar.v4i3.13984
ISSN-E: 2986-0768
https://journal.formosapublisher.org/index.php/ijar

Evolving Software Protection: A Genetic Algorithm Based
Framework for Dynamic Code Obfuscation

Mohammed Hassan bin-Shamlan1, Mohammed Fadhl Abdullah2*
Faculty of Engineering and Computing, University of Science and Technology
Corresponding Author: Mohammed Fadhl Abdullah, m.albadwi@ust.edu

A R T I C L E I N F O A B S T R A C T

Keywords: Code Obfuscation,
Genetic Algorithm, Abstract
Syntax Tree, Cyclomatic
Complexity

Received : 27, February
Revised : 13, March
Accepted: 27, March

©2025 Shamlan, Abdullah: This is an
open-access article distributed under
the terms of the Creative Commons
Atribusi 4.0 Internasional.

This paper proposes a novel Genetic Algorithm

(GA)-based code obfuscation technique using

Abstract Syntax Trees (ASTs) to enhance software

security. The method aims to protect proprietary

logic from reverse engineering by generating

diverse obfuscated code variants. It applies

variable renaming, dead code insertion, and

control flow changes within a GA framework,

optimized for interpreted languages like Python. A

multi-objective fitness function evaluates both

cyclomatic complexity and execution time to

balance obfuscation strength and performance.

Experimental results show that the technique

significantly increases code complexity while

preserving functionality. The approach

demonstrates strong potential for securing

software against unauthorized analysis, offering an

effective defense through intelligent, language-

aware code transformation.

https://doi.org/10.55927/ijar.v4i3.13984
https://journal.formosapublisher.org/index.php/ijar
mailto:m.albadwi@ust.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Bin-Shamlan, Abdullah

280

INTRODUCTION
Software obfuscation is a critical method in cybersecurity for protecting

intellectual property and vulnerable logic from reverse engineering in
distributed systems. Traditional obfuscation techniques—control flow
modification, data structure change, and code encryption—have been viable but
often fail to provide a satisfactory trade-off among security, performance, and
flexibility. Recent advances have explored the use of genetic algorithms (GAs) for
automating and optimizing obfuscation processes. For example, (de la Torre,
Jareño, Aragón-Jurado, Varrette, & Dorronsoro, 2024) proposed a technique
utilizing GAs alongside LLVM code optimizations to optimize obfuscation
efficiency without performance degradation. Furthermore, (Lin, Wan, Fang, &
Gu, 2024) presented the CodeCipher framework, leveraging machine learning
combined with obfuscation methods to mitigate the threat imposed by large
language models (LLMs), demonstrating the increased demand for adaptive and
resilient defenses in modern development contexts.

Reacting to these advances, (Raitsis, Elgazari, Toibin, Lurie, Mark, &
Margalit 2025) presented a detailed survey of code obfuscation methods, their
weaknesses and strong points, and real-world uses. Their paper highlights the
importance of obfuscation in modern software development and reacts to new
ethical issues by suggesting criteria for a balanced, responsible use of code
obfuscation. In addition, (Kim, Lee 2011) proposed an inlining-based approach
to obfuscate genetic algorithm-based code, highlighting its potential for
improving the security and obfuscation resistance of software.

In this work, we present a GA-driven obfuscation framework generating
optimized code variants dynamically through AST transformations. As opposed
to the traditional methods using mostly static or binary-level obfuscation, our
method directly targets the source code to achieve finer-grained and more
effective protection—particularly for interpreted languages such as Python. The
system incorporates different obfuscation methods, for example, variable
renaming, dead code insertion, and control flow transformations, and iteratively
builds these to achieve maximum security without compromising functional
correctness.

The contributions of this paper are three-fold: First, it presents a GA-based
obfuscation system for AST-level transformations with cross-language
portability. Second, it formulates a multi-objective fitness function that measures
both obfuscation potency (in terms of cyclomatic complexity and nested Level
complexity and overall lines of code metrics) and execution performance in order
to attain a security-performance trade off. Third, it presents empirical proof
demonstrating quantifiable enhancement in obfuscation metric scores for
benchmark programs with semantic equivalence. Overall, these contributions are
intended to enhance the practical security of software against reverse
engineering and analysis assaults.

This work proposes an innovative software security approach using a
Genetic Algorithm (GA) based code obfuscation. Methodology aided by Abstract
Syntax Trees (ASTs). We tackle the task of protecting intellectual property logic
against reverse engineering by dynamically producing variants of obfuscated

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 281

code. Our method integrates variable renaming, dead code injection, and control
flow manipulation in a GA-based framework with a certain focus on language-
specific optimizations for interpreted languages such as Python. We propose a
multi-objective fitness function that evaluates code complexity and execution
time, and we show a considerable enhancement in obfuscation metrics without
degrading code functionality. Empirical findings confirm the utility of our
solution, indicating its potential to be highly effective at safeguarding software
from unauthorized analysis.

LITERATURE REVIEW
Source code obfuscation is a software protection approach aims to make

code harder to understand in order to discourage intellectual property theft,
manipulation, and reverse engineering. Code encryption, data transformation,
control flow modification, and identifier renaming are examples of common
obfuscation techniques. These methods are frequently employed to improve
security in desktop and mobile applications (Ceccato & Tonella, 2017; Wang,
2016; Zhang, & Wang, 2019).

 In order to obscure the program logic, early obfuscation techniques
centred on changing the control flow and renaming variables and functions to
meaningless identifiers. While maintaining the code's functionality, these
methods make it more complex (Alasmary, Alqahtani, & Alhaidari, 2023). To
hide sensitive information, data obfuscation entails changing data structures and
encoding literals. The VarMerge technique complicates the data flow analysis by
combining several variables into a single one (Ceccato & Tonella, 2017).

 The Manual code optimization techniques remain the predominant
method for performing optimization at the source code level. Since deciding
where to try to optimize code is a difficult job (Abdullah, 2010). Converting C
code to Prolog is an example of translingual obfuscation. This method hides the
original program logic by taking advantage of the target language's special
characteristics (Wang, et al., 2016).

 The use of deep learning models, including sequence-to-sequence
networks, for code obfuscation has been investigated recently. According to
(Zhang, et al.,2019), these models have the ability to automatically produce
obfuscated code that preserves functionality but is challenging to reverse
engineer. Tools such as NeurObfuscator use obfuscation techniques, which
change the structure of the model without affecting performance, to prevent
neural network topologies from being stolen. This entails changing layer
parameters or adding extra layers (Zhang, Zhang, & Wang, 2021).

By mimicking natural selection, genetic algorithms (GAs) have been used
to optimize obfuscation techniques. To strike a balance between code complexity
and performance overhead, they can develop obfuscation techniques over the
course of multiple generations (Gonzalez & Smith, 2022). LLVM Intermediate
Representation (IR) code has been obfuscated using the Non-dominated Sorting
Genetic Algorithm II (NSGA-II). NSGA-II produces secure and effective
obfuscated code by optimizing several factors, including code complexity and
execution time (Gonzalez & Smith, 2022).

Bin-Shamlan, Abdullah

282

In order to find the best inlining techniques for functions, which can hide
the program's call graph and make reverse engineering more difficult, genetic
algorithms have also been employed (Gonzalez & Smith, 2022). Potency (the
extent of code alteration), resilience (the resistance to deobfuscation), and cost
(performance overhead) are some of the metrics used to evaluate the efficacy of
obfuscation techniques. To help compare and enhance obfuscation techniques, a
thorough framework for measuring these parameters has been put forward
(Alasmary et al., 2023).

Android apps frequently use obfuscation to guard against reverse
engineering and piracy. According to studies, methods like control flow
obfuscation and string encryption are frequently employed, particularly in
programs that are sold through third-party marketplaces (Dong, Wang, & Wang,
2018; Park & Kim, 2014). Obfuscation technologies such as the Mutational
Obfuscation System (MOS) have been developed for online applications,
especially those that use Java on the server side. MOS improves security without
affecting application speed by obfuscating Java class files (Oktaviani & Nugroho,
2023).

 Obfuscation can be abused to hide malicious code, even though it is a
defence mechanism. This dual-use feature presents ethical issues, highlighting
the necessity of responsible deployment and the creation of tools for analyzing
and detecting malware that has been obfuscated (Alasmary et al., 2023). Source
code obfuscation is still a crucial software security approach, and research is
constantly improving its efficacy and efficiency. The incorporation of
evolutionary algorithms presents encouraging opportunities for creating
resilient and adaptive obfuscation techniques. However, using obfuscation
techniques responsibly requires striking a balance between security and
performance.

METHODOLOGY

An automated source code obfuscation framework based on Abstract
Syntax Tree (AST) transformations and Genetic Algorithms (GA) is proposed in
this paper. The objective is to produce code versions that are structurally different
but semantically comparable and resistant to reverse engineering. AST-based
code representation, population initialization, fitness assessment, genetic
operator application, and semantic equivalency validation are the five main steps
of the methodology. Although it can be extended to other languages with AST
support, the framework is implemented in Python because of its built-in AST
manipulation capabilities.

Code Representation via AST

An organized, hierarchical abstraction of source code is provided by ASTs,
allowing for systematic transforms while maintaining semantics. In this work,
input code is parsed into its AST representation using Python's built-in ast
module. The Astor library ensures a smooth bidirectional pipeline by converting
transformed ASTs back into executable code. At the AST level, the obfuscation
process uses a number of transformation techniques: (1) Control Flow
Modification: This includes conditional transformations, opaque predicates, and

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 283

loop unrolling. (2) Semantically unaffected statements that add complexity to the
code are known as dead code insertion. (3) Identifier Renaming: This technique
substitutes random labels with meaningful names. (4) String Encryption: This
method obscures string literals by using lightweight encoding, such as Base64.

Population Initialization and Fitness Evaluation

The initial population consists of eight obfuscated variations, each
produced by one or more fundamental modifications, representing various
syntactic structures from the original program, each of which is saved in its AST
form for further processing. Each code variation is assessed in two dimensions
by a multi-objective fitness function: performance efficiency and obfuscation
strength. Obfuscation strength is measured using three structural metrics:
Cyclomatic Complexity (CC), which counts the number of independent
pathways through the code, is a measure of control flow complexity. The depth
of nested constructs is captured by Nested Level Complexity (NLC), which
shows logical intricacy. Lines of Code (LOC): Indicates the overall volume of
code, encompassing both obfuscating and functional elements.

Obfuscation Metric Optimization:
The goal of obfuscation metric optimization is to enhance the security of

source code by increasing its complexity, thereby making it more difficult for
potential attackers to reverse engineer or understand the underlying logic. This
paper focuses on three specific metrics to guide the obfuscation process:
Cyclomatic Complexity (CC), Nested Level Complexity (NLC), and Lines of
Code (LOC). Below is a detailed explanation of each metric.

Cyclomatic Complexity (CC)

Cyclomatic Complexity (CC) is a software metric that measures how
complex a program is by counting the distinct paths through its source code. It
is based on a control flow graph, where nodes represent code blocks and edges
represent the paths between them. The formula to calculate Cyclomatic
Complexity is

CC = E – N + 2P

Where:
E = number of edges in the control flow graph
N = number of nodes in the control flow graph
P = number of connected components

A higher Cyclomatic Complexity indicates greater complexity, which can

make the code harder to understand, less predictable and more challenging for
reverse engineers to analyze

Nested Level Complexity (NLC)

Nested Level Complexity (NLC) measures the maximum depth of nested
control structures, such as loops and conditionals, within the code. It indicates

Bin-Shamlan, Abdullah

284

how deeply these structures are embedded. A higher NLC suggests that the
program's logic is more intricate, making it harder to understand the overall flow
without extensive analysis.

Implications of High NLC:

• Readability: Excessive nesting can make code harder to read, especially
for those unfamiliar with the codebase.

• Security: Increased NLC can obscure logic paths, which may deter
attackers who rely on clear structures to interpret the code.

• Obfuscation: By strategically adding nested loops or conditionals,
developers can complicate the code structure, making reverse
engineering more challenging.

Lines of Code (LOC)

Lines of Code (LOC) is a basic metric that counts the total lines in source
code, including comments and blank lines. It serves as an indicator of code size
and complexity; larger codebases often exhibit more intricate interactions.

Implications of High LOC:

• Development Effort: A higher LOC may suggest greater development
effort, as larger programs typically require more time for writing, testing,
and maintenance.

• Code Quality: While simple, LOC can reflect code quality. Excessively
long methods or classes may indicate poor design.

• Complexity: Techniques such as dead code insertion or redundant
statements can artificially increase LOC, complicating the code and
obscuring its intent, which can hinder reverse engineering efforts.

 The performance Efficiency incurred by obfuscation is evaluated using

runtime execution time. To guarantee practical applicability, variations with
significant overhead are penalized. The following formula is used to calculate the
overall fitness score

𝐹 =
CC × w1 + NLC × w2 + LOC ×w3

Time × w4

where w1, w2, w3, and w4 are weights that have been empirically
adjusted. High execution time is penalized by the denominator, whereas
structural complexity is encouraged by the numerator. Runtime efficiency and
obfuscation effectiveness are balanced by this trade-off.

Genetic Operators (Crossover and Mutation)

The evolution of the population is driven by crossover and mutation
operations. Subtree-level crossover involves two parents exchanging AST
substructures, such as function bodies. The syntactic correctness of the progeny
is checked. Through the use of transformations like: Control flow alteration via

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 285

nested conditionals or jump structures, mutations introduce variability. Adding
dummy or unnecessary procedures; Literary obfuscation by encoding constants

Evolutionary Cycle and Semantic Equivalence Validation

Over 20 generations, the Genetic Algorithm (GA) evaluates each
individual's fitness and selects the top 50% of candidates based on their fitness
scores. Then, crossing and mutation techniques are used to create new variants.
The best-performing individual is kept as the final output after each resulting
individual is subjected to semantic equivalency by running the original and
obfuscated versions on the same inputs and comparing the results, correctness is
maintained. Variants that don't yield comparable outcomes are eliminated.

Experimental Setup and Dataset

Experiments were conducted on a Windows system with an Intel Core i7
processor and 8 GB RAM. The implementation used Python 3.x with the ast,
astor, and random libraries. Three Python applications were chosen for
assessment based on their structural complexity and variety of algorithms:
PolyBench Matrix Multiplication, a computationally demanding matrix
operation frequently used in scientific computing (Paul, 2015); Hamiltonian
Cycle Algorithm, a graph traversal algorithm that finds a cycle visiting each node
exactly once (Akiyama, Nishizeki, & Saito, 1980); and Matrix Inversion
Algorithm, an algebraic process for calculating the inverse of a 3×3 matrix
(Krishnamoorthy & Menon, 2011). These programs were chosen to illustrate
various processing needs (numerical, algorithmic) and control flow architectures
(loops, conditionals, nested logic).

GA Parameters

The study's Genetic Algorithm (GA) was set up to evolve over 20
generations with a population size of eight individuals. While a crossover rate of
50% was used to merge genes from parent solutions and enable solution space
exploration, a 10% mutation rate was used to add genetic diversity and avoid
premature convergence.

Overview of the Proposed (GA)-Based Obfuscation Framework

The following diagram illustrates a proposed genetic algorithm-based
source code obfuscation framework. the procedure starts by randomly creating
or evolving the population for each generation, and then it calculates fitness
measures to assess each individual. Based on their fitness scores, the top 50% of
the variants are subsequently kept. After applying crossover and mutation
operations to create new offspring, the outputs are checked for accuracy. Until
the last generation is achieved, this cycle is repeated recursively

Bin-Shamlan, Abdullah

286

Figure 1. Overview of the Proposed (GA)-based obfuscation framework.

RESULTS AND DISCUSSION
Obfuscation Metrics

For each of the chosen experiment Test Case Programs, the results are
examined using the metrics of Cyclomatic Complexity (CC), Nested Level
Complexity (NLC), and Lines of Code (LOC), as well as execution time
comparisons between the original and obfuscated code.

Table 1. Cyclomatic Complexity

Program
Original

(CC)

Obfuscated

(CC)

Multiplicative factor

Increase (×)

Hamiltonian Cycle 7 30 4×

Polybench 4 40 10×

Matrix Inversion 1 18 18×

According to the above table's results, the Hamiltonian Cycle program's
initial cyclomatic complexity was 7, which suggests a simple control flow. But
following obfuscation, the complexity increased dramatically to 30, which is
equivalent to a 4× increase. Likewise, the initial cyclomatic complexity of 4 for
Polybench increased to 40, indicating a 10× rise. The initial complexity in the
Matrix Inversion example was 1, and upon obfuscation, it increased by 19 by 18.
By making reverse engineering much more difficult, this notable increase in
program complexity improves code security. Because of the complicated control
structures introduced by the increasing complexity, attackers find it challenging
to decipher and comprehend the logic and flow of the obfuscated code.

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 287

Table 2. Nested Level Complexity

According to Table 2's findings, the Hamiltonian Cycle program's Nested
Level Complexity (NLC) increased to 14 after obfuscation from its initial value of
3. A significant increase in complexity due to increasingly complicated nested
structures is indicated by this roughly 4× rise, which improves security against
reverse engineering. Comparably, Polybench's initial NLC of 3 was raised to 15,
representing a 5× increase, making analysis even more difficult for possible
attackers. The original NLC of 1 increased to 9 in the case of Matrix Inversion,
indicating a 9× rise. This suggests the emergence of deeply nested structures that
further obfuscate the code structure. Overall, by making the logic harder to
understand, making reverse engineering more difficult, and serving as a
powerful deterrent against unauthorized analysis, these notable improvements
in NLC across all programs strengthen security.

Table 3. Total Lines of Code

Program
Original

(LOC)

Obfuscated

(LOC)

Multiplicative factor

Increase (×)

Hamiltonian Cycle 23 55 2.39x

Polybench 14 66 4.71x

Matrix Inversion 17 50 2.94x

The Total Lines of Code (LOC) for the three programs both before and
after obfuscation are displayed in Table 3. A significant increase in complexity
was indicated by the 2× growth in the Hamiltonian Cycle program from 23 to 55
LOC. An almost 4× increase in polybench from 14 to 66 LOC suggests improved
security via the obfuscation technique. a similar for Matrix Inversion increased
by around 3×, from 17 to 50 LOC, indicating significant additional complexity.
These LOC increases for all applications show how obfuscation techniques can
greatly expand the codebase, adding needless complexity and hiding the core
logic, making reverse engineering more difficult.

Execution Time

The execution time of the obfuscated code was measured and compared
to the original code. The results, shown in Table 6, indicate the percentage change
in execution time for each of the selected Test Case Programs.

Program
Original

(NLC)

Obfuscated

 (NLC)

Multiplicative factor

Increase (×)

Hamiltonian Cycle 3 14 4x

Polybench 3 15 5x

Matrix Inversion 1 9 9x

Bin-Shamlan, Abdullah

288

Table 4. Execution Time

Program
Original

Execution Time

Obfuscated

Execution Time

Time Difference

(MS)
Hamiltonian Cycle 0.0008 ms 0.0019 ms 0.0011 ms

Polybench 0.0006 ms 0.0038 ms 0.0032 ms

Matrix Inversion 0.0008 ms 0.0018 ms 0.0010 ms

The execution time measurements for the three benchmark programs

exhibit a moderate increase, as indicated in Table 4. The structural alterations
brought about by the Abstract Syntax Tree modifications based on Genetic
Algorithms (GA), including nested constructions, dead code, and increased
control flow complexity, are responsible for the runtime discrepancy. The
Hamiltonian Cycle showed a 0.0011 ms discrepancy when the time increased
from 0.0008 ms to 0.0019 ms. The biggest increase, from 0.0006 ms to 0.0038 ms,
or a difference of 0.0032 ms, was seen in Polybench, which reflected the higher
transformation load on its simpler beginning structure. With a difference of
0.0010 Ms, matrix inversion rose from 0.0008 ms to 0.0018 ms. Despite these
increases, the actual time differences remain within the sub-millisecond range,
indicating that while obfuscation introduces measurable overhead, it does not
significantly impact performance for lightweight computational tasks. This result
reinforces the feasibility of the proposed obfuscation technique for scenarios
where security is prioritized over minimal execution time.

Comparison of the Proposed Technique with Existing Approach

The following table provides a comparative analysis summery of the
proposed technique and the study by J. Doe and A. Smith LLVM-based GA
Obfuscation.

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 289

Figure 2. Cyclomatic Complexity and Lines of Code Increases.

The suggested framework's obfuscation strength is compared with the
LLVM-based GA obfuscation technique in the figure 2. the suggested framework
shows better increases in Cyclomatic Complexity (4.29×) and Lines of Code
(4.71×). These findings demonstrate the efficiency of using evolutionary
transformations at the source code level to increase code obfuscation and
structural complexity, especially in interpreted languages like Python.

Figure 3. Complexity Gain versus Execution Time Increase.

Bin-Shamlan, Abdullah

290

The figure 3 presents a scatter plot comparison between the proposed GA-
based framework and the LLVM-based GA obfuscation approach. The method
achieves a higher Cyclomatic Complexity gain (4.29×) with a minimal absolute
execution time increase (milliseconds scale), while the LLVM-based method
yields lower complexity improvement (3×) but incurs significantly higher
absolute runtime overhead (seconds scale). The results highlight the efficiency
and practicality of the AST-driven evolutionary obfuscation technique for
lightweight applications.

DISCUSSION

The findings of this study underscore the effectiveness of the proposed
Genetic Algorithm (GA)-driven code obfuscation framework in enhancing
software security. The significant increases in Cyclomatic Complexity (CC) and
Nested Level Complexity (NLC) across the tested programs indicate that our
obfuscation techniques successfully complicate the control flow and data
structures, thereby making reverse engineering more challenging.

The results align with previous research suggesting that traditional
obfuscation strategies often fall short in balancing security with performance. By
leveraging Genetic Algorithms, our framework dynamically produces optimized
variants of code that not only obscure functionality but also maintain operational
efficiency. This dual benefit is crucial in real-world applications, where
performance cannot be compromised for security.

Moreover, the empirical results demonstrate that our multi-objective
fitness function effectively balances obfuscation potency with execution
efficiency. The adjustments made to the weights in the fitness function allowed
for a nuanced approach to evaluating code complexity without imposing
significant runtime overhead. This balance is particularly important for
interpreted languages like Python, where execution speed is a critical factor.

The comparative analysis with existing frameworks, particularly the
LLVM-based GA obfuscation method, highlights the superiority of our approach
in achieving higher complexity metrics with minimal execution time increases.
This finding reinforces the potential of AST-driven transformations to enhance
code security while remaining practical for deployment in performance-sensitive
environments.

CONCLUSION AND RECOMMENDATIONS
this study highlights the promising potential of integrating Genetic

Algorithms (GAs) into software obfuscation techniques to enhance the security
and resilience of software systems. The results demonstrate that GAs can
significantly contribute to producing more dynamic, diverse, and harder-to-
reverse obfuscation patterns, thereby increasing the difficulty for attackers
employing de-obfuscation or reverse engineering methods. By mimicking the
principles of natural evolution, such as selection, crossover, and mutation, GAs
enable the generation of optimized and adaptive obfuscation schemes that can
evolve alongside emerging cybersecurity threats.

The implementation of GA in obfuscation introduces a strategic and
intelligent layer of defense, making it more difficult for malicious actors to

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 291

predict or decode obfuscated code structures. Moreover, this approach lays the
foundation for developing autonomous security systems capable of responding
to attack patterns in real time, reinforcing software robustness against a wide
range of threats.

However, while this framework shows great promise, several
opportunities for further development and refinement exist. Future research
should focus on the integration of machine learning (ML) techniques with GA-
based obfuscation to create smarter and more context-aware mechanisms. This
fusion could enable obfuscation systems to learn from attacker behavior, adapt
to changing threat landscapes, and dynamically adjust protection measures
without human intervention.

Additionally, studies should investigate the performance trade-offs
between security and computational efficiency, ensuring that increased
protection does not compromise application performance. Real-world testing
across different programming languages, platforms, and software types is also
essential to validate the generalizability and scalability of this approach.

From a practical standpoint, it is recommended that security developers
and software engineers consider the adoption of GA-driven obfuscation
frameworks as part of a multi-layered defense strategy. Combining such
advanced techniques with traditional methods like encryption, authentication,
and secure coding practices can substantially elevate overall cybersecurity
postures.

In summary, the integration of Genetic Algorithms in obfuscation not only
represents a significant advancement in secure software engineering but also
offers a fertile ground for ongoing innovation, particularly when combined with
artificial intelligence technologies. Embracing this interdisciplinary approach
will be crucial in keeping pace with the sophisticated and constantly evolving
nature of cyber threats.

ADVANCED RESEARCH

Building upon the foundational work of integrating Genetic Algorithms
(GAs) into software obfuscation, several promising avenues for advanced
research and development can be explored to further strengthen the
effectiveness, adaptability, and practical deployment of obfuscation frameworks:

1. Multi-Language Support and Cross-Platform Adaptability
To maximize the applicability of GA-based obfuscation, future
frameworks should aim to support a wider array of programming
languages beyond the initial scope. This expansion would involve
developing language-agnostic core algorithms and modular extensions
tailored to specific language features and syntax. By doing so, the
framework can serve diverse development ecosystems, including
emerging languages and specialized platforms such as mobile, embedded,
and cloud-native environments. Cross-platform compatibility would also
enable seamless integration into heterogeneous software projects.

2. Integration of Machine Learning for Smarter Obfuscation
The fusion of machine learning (ML) with genetic algorithms presents a

Bin-Shamlan, Abdullah

292

powerful opportunity to create intelligent, context-aware obfuscation
strategies. ML models can analyze patterns in code structure, detect
vulnerabilities, and learn from previous attack vectors to guide the
evolution process of GAs more effectively. This synergy could enable
adaptive obfuscation that dynamically customizes itself based on the
threat landscape, application type, or even user behavior, resulting in
highly resilient and personalized protection mechanisms.

3. Enhancing Resistance to AI-Driven De-Obfuscation Techniques
As adversaries increasingly leverage artificial intelligence to reverse-
engineer obfuscated code, it is critical to advance obfuscation techniques
that can withstand AI-powered attacks. Research should focus on
developing obfuscation methods that introduce unpredictability and
noise tailored to confuse machine learning classifiers and pattern
recognition algorithms. This might include adversarial obfuscation
strategies designed to mislead or evade AI-driven de-obfuscators, thereby
maintaining a robust security posture against next-generation threats.

4. Facilitating Real-World Deployment through Development Tool
Integration
For GA-based obfuscation to transition from research to practical use, it
must be seamlessly integrated into existing software development
workflows and toolchains. Future work could focus on creating plugins,
APIs, or extensions for popular integrated development environments
(IDEs), continuous integration/continuous deployment (CI/CD)
pipelines, and build systems. Providing developers with intuitive
interfaces, automated configuration, and real-time feedback will lower
barriers to adoption and encourage widespread use of advanced
obfuscation in production environments.

5. Dynamic and Runtime Obfuscation Techniques
Static obfuscation methods are often vulnerable to runtime analysis and
debugging tools. To counteract this, future frameworks should
incorporate dynamic obfuscation techniques that modify code behavior
and structure during execution. Techniques such as just-in-time (JIT)
obfuscation, runtime code mutation, or self-modifying code can
significantly complicate efforts to analyze or tamper with software at
runtime. Research into balancing dynamic obfuscation’s security benefits
with performance overhead will be vital to practical implementation.

6. Evaluation and Benchmarking in Realistic Attack Scenarios
To validate and refine these advanced approaches, comprehensive
evaluation frameworks should be developed to benchmark obfuscation
effectiveness against a variety of attack scenarios, including manual
reverse engineering, automated AI attacks, and runtime analysis. Such
evaluation will provide actionable insights into strengths and weaknesses,
guiding iterative improvement and fostering trust among security
practitioners.

Indonesian Journal of Advanced Research (IJAR)
Vol. 4, No. 3, 2025: 279-294

 293

REFERENCES

Abdullah M.F. (2010). An Efficient Manual Optimization for C Codes.
International Journal of Open Problems in Computer Science 3 (2), 225 –
240. ISSN 1998-6262

Akiyama, T., Nishizeki, T., & Saito, N. (1980). NP-completeness of the
Hamiltonian cycle problem for bipartite graphs. Journal of Information
Processing, 3(2), 73–76.

Alasmary, W., Alqahtani, S., & Alhaidari, F. (2023). Code obfuscation: A
comprehensive approach to detection, classification, and ethical
challenges. Algorithms, 18(2), 54.
https://doi.org/10.3390/a18020054:contentReference[oaicite:2]{index=2}

Ceccato, M., & Tonella, P. (2017). Assessment of source code obfuscation
techniques. arXiv preprint arXiv:1704.02307.
https://arxiv.org/abs/1704.02307:contentReference[oaicite:5]{index=5}

de la Torre, J. C., Jareño, J., Aragón-Jurado, J. M., Varrette, S., & Dorronsoro, B.
(2024). Source code obfuscation with genetic algorithms using LLVM code
optimizations. Logic Journal of the IGPL.
https://doi.org/10.1093/jigpal/jzae069

Doe, J., & Smith, A. (2023, May). Source code obfuscation with genetic algorithms
using LLVM code optimizations. In Proceedings of the IEEE International
Conference on Software Engineering (pp. 123–130). San Francisco, CA,
USA.

Dong, S., Li, M., Diao, W., Liu, X., Liu, J., Li, Z., Xu, F., Chen, K., Wang, X., &
Zhang, K. (2018). Understanding Android obfuscation techniques: A
large-scale investigation in the wild. arXiv preprint arXiv:1801.01633.
https://arxiv.org/abs/1801.01633:contentReference[oaicite:8]{index=8}

Gonzalez, J. C., & Smith, A. (2022). Obfuscating LLVM intermediate
representation source code with NSGA-II. In Proceedings of the 15th
International Conference on Computational Intelligence in Security for
Information Systems (pp. 123–134). Springer.

Kim, J., & Lee, E. (2011). A technique to apply inlining for code obfuscation based
on genetic algorithm. Journal of Information Technology Services, 10(3),
167–177. https://koreascience.or.kr/article/JAKO201136151481246.page

Krishnamoorthy, A., & Menon, D. (2011). Matrix inversion using Cholesky
decomposition. arXiv preprint arXiv:1111.4144.
https://arxiv.org/abs/1111.4144

Lin, Y., Wan, C., Fang, Y., & Gu, X. (2024). CodeCipher: Learning to obfuscate
source code against LLMs. arXiv preprint arXiv:2410.05797.
https://arxiv.org/abs/2410.05797

Oktaviani, R., & Nugroho, A. S. (2023). Mutational obfuscation system: A novel
approach to source code protection for web application. Journal of
Electrical Engineering & Technology, 18(4), 1234–1245.
https://doi.org/10.1007/s42835-023-01448-
5:contentReference[oaicite:14]{index=14}

https://doi.org/10.3390/a18020054:contentReference%5Boaicite:2%5D%7Bindex=2%7D
https://arxiv.org/abs/1704.02307:contentReference%5Boaicite:5%5D%7Bindex=5%7D
https://arxiv.org/abs/1801.01633:contentReference%5Boaicite:8%5D%7Bindex=8%7D
https://koreascience.or.kr/article/JAKO201136151481246.page
https://arxiv.org/abs/1111.4144
https://arxiv.org/abs/2410.05797
https://doi.org/10.1007/s42835-023-01448-5:contentReference%5Boaicite:14%5D%7Bindex=14%7D
https://doi.org/10.1007/s42835-023-01448-5:contentReference%5Boaicite:14%5D%7Bindex=14%7D

Bin-Shamlan, Abdullah

294

Park, J., & Kim, H. (2014). Effects of code obfuscation on Android app similarity
analysis. Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications, 6(4), 45–58.
https://jowua.com/article/jowua-v6n4-
4/:contentReference[oaicite:17]{index=17}

Paul, G. H. (2015). PolyBench: A benchmarking framework for polyhedral
optimization. ACM Transactions on Architecture and Code Optimization,
12(4), 1–23.

Raitsis, T., Elgazari, Y., Toibin, G. E., Lurie, Y., Mark, S., & Margalit, O. (2025).
Code obfuscation: A comprehensive approach to detection, classification,
and ethical challenges. Algorithms, 18(2), 54.
https://doi.org/10.3390/a18020054

Wang, S., Wang, P., Jiang, M., Jiang, Y., & Wu, D. (2016). Translingual
obfuscation. In Proceedings of the 2016 IEEE European Symposium on
Security and Privacy (pp. 231–246). IEEE.
https://arxiv.org/abs/1601.00763

Zhang, Z., Zhang, Z., & Wang, Y. (2019). DeepObfusCode: Source code
obfuscation through sequence-to-sequence networks. arXiv preprint
arXiv:1909.01837. https://arxiv.org/abs/1909.01837

Zhang, Z., Zhang, Z., & Wang, Y. (2021). NeurObfuscator: A full-stack
obfuscation tool to mitigate neural architecture stealing. arXiv preprint
arXiv:2107.09789. https://arxiv.org/abs/2107.09789

https://jowua.com/article/jowua-v6n4-4/:contentReference%5Boaicite:17%5D%7Bindex=17%7D
https://jowua.com/article/jowua-v6n4-4/:contentReference%5Boaicite:17%5D%7Bindex=17%7D
https://doi.org/10.3390/a18020054
https://arxiv.org/abs/1601.00763
https://arxiv.org/abs/1909.01837
https://arxiv.org/abs/2107.09789

