
Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

957
DOI: https://doi.org/10.55927/ijis.v2i7.4810
ISSN-E: 2985-9050
https://journal.formosapublisher.org/index.php/ijis

Genetic Algorithm Approach for Cutting Stock Problems in
Construction Industries
Bambang Santoso1*, Heri Haerudin2

Universitas Pamulang
Corresponding Author: Bambang Santoso dosen01692@unpam.ac.id

A R T I C L E I N F O A B S T R A C T

Keywords: Cutting Stock
Problem, Genetic Algorithm,
Reinforced Concrete,
Constructions

Received : 5 May
Revised : 16 June
Accepted: 15 July

©2023 Santoso, Haerudin: This is an
open-access article distributed under the
terms of the Creative Commons Atribusi
4.0 Internasional.

Cutting Stock Problem (CSP) is a classic problem
involving cutting long stocks into smaller
products with certain quantities. The optimization
is to find cutting patterns with minimum waste. In
construction industries, CSP applies to steel bar
cutting. The steel bar is an important element in
making reinforced concrete. The length of the steel
bars from the steel manufacturers is fixed, while
the requirements for the constructions are
varying. The problem is to find optimized way to
cut long, fixed-length steel bars into smaller,
varying length bars required in the constructions.
The requirements are different from building to
building, both in the lengths and quantities. Many
studies have been extensively done on the subject,
from Brute Force, Greedy Search to Linear
Programming. In this paper the study focuses on
Genetic Algorithm approach. The results look
promising for Fitness Function 1 where the focus
is to minimize waste. Waste ranges from 2.03% to
4.31%. Fitness function 2 and 3 do not emphasize
merely on minimizing the waste, but also on
contiguity. Therefore the residues are more,
ranges from 2.21% to 4.91% for Fitness Function 2
and from 2.03% to 30.7% for Fitness Function 3

https://doi.org/10.55927/ijis.v2i7.4810
mailto:dosen01692@unpam.ac.id
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Santoso, Haerudin

958

INTRODUCTION
Minimizing waste is the goal of Cutting Stock Problem (CSP). In many

literatures (Abuhassan & Nasereddin, 2011) (Yan Chen, Xiang Song, Djamila
Ouelhadj, 2017) (Pierini & Poldi, 2021), the example is in paper mills where
production machines can produce fixed width paper rolls, but the requirements
are for smaller-width rolls, although with the same length. The paper mill then
needs to slice the paper rolls into several narrow-width rolls. CSP solution solves
many real life problems in mass production industries such as steel, wood, glass,
paper, textiles, and others (Yan Chen, Xiang Song, Djamila Ouelhadj, 2017)
(Ogunranti & Oluleye, 2016). There are one-, two-, three-, and multi-dimensional
CSP (Delorme, 2017). Several other variations like with and without contiguity
gives more variety of CSP solutions.

When dealing with CSP, the large items are normally called Stock Materials
or in short Stocks; the smaller items are called Products. The first problem is
Assortment Problem to address the problem of how to find the optimal size of
the Stocks. The second problem is Trim Loss Problem to find the way to
efficiently cuts Stocks into Products in order to minimize the wastage. Both
problems are known as Cutting Stock Problems (CSP). The case in this paper is
Trim Loss Problem in one dimensional CSP.

In construction works, reinforced concrete is an important element of a
building. It is the skeleton of a building that all other components rely on it.
Reinforced concrete needs steel bars as its core with different diameters, lengths,
and quantities.

The construction companies purchase steel bars from steel manufacturers
or steel suppliers. The steel bars are of fixed length, while the requirements vary
from one building to another. Example of the requirements for a building is as in
Table 1 below.

Table 1. Example of Steel Bar Requirements

Diameter Length Quantity Required

10 mm 1.9 m 200

 2.2 m 150

 2.7 m 100

 3.1 m 200

The optimization problem then arises: how should they cut Stocks into

Products to minimize the wastage? Additional question is: how many steel bars
must the company purchase?

When talking about the significance of the problem, minimizing cost is
always one of the goals to maximize profit with a condition that it does not
sacrifice the quality of the finish product.

By planning ahead the cutting patterns, the company can buy at once all the
steel stock requirements. This will avoid buying additional steel later when they
find it is less than the requirements (will get less discount), or keep the Stocks in
their stores when it is more than the requirements (need storage space).

Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

 959

Furthermore, as environment awareness becomes a more significant issue
nowadays, the company want to preserve the environment. The steel wastage is
bad pollutant. Minimizing steel wastage is good for environment.

LITERATURE REVIEW
The best way to find patterns for cutting Stocks is Brute Force method. With

Brute Force, all possibilities are examined one by one and the optimal solution is
found. This method is the best and is guaranteed to produce the optimal solution,
but it takes a long time. The time required increases exponentially with the
number of variables used. Because of this reason Brute Force is avoided unless
the number of items is low.

Greedy Search is the second approach, which is looking for optimal
solutions at each level (Feo & Resende, 1995) (Santoso et al., 2019). This approach
results in a fast algorithm. But sometimes it stops at the pseudo peak so that
optimum results are questionable. (Lazar & Zuazua, 2022)

Several other approaches are also carried out such as Linear Programming
(Abuhassan & Nasereddin, 2011) (Porumbel, 2022), Simulated Annealing
(Kokten & Sel, 2022).

Another approach that will be used in this study is the Genetic Algorithm
(GA). The GA approach uses chromosomes as candidate solutions, imitating
living things.

METHODOLOGY
Formal Definition of the Problem

The problem in this study is to find optimal or near-optimal solution for
single length stocks 1-dimensional CSP without contiguity. For illustration
purposes, the requirements in Table 1 will be used through out the paper.

Suppose:
 li = the length of i-th requested item
 ci = quantity required for i-th requested item

The solution to fulfil is the following.
 c1l1 + c2l2 + … + cnln , i = 1, 2, … , n

In the example in Table 1 this translates to fulfil the following.
 200 (1.9) + 150 (2.2) + 100 (2.7) + 200 (3.1),
 i = 1, 2, 3, 4

The total length of the required stocks is:
 z = k * y

 k = number of stocks required
 y = stock length

In the example in Error! Reference source not found., the total length will
be:

 z = k * 12 = 12k

Cutting patterns for each stock can be listed as:
 p11l1 + p12l2 + … + p1nln ≤ y

or
 n

 ∑ pjili ≤ y

Santoso, Haerudin

960

 i=1

 pji = number of i-th item in j-th pattern
 i = 1, 2, …, n

 j = 1, 2, …, m

For example, three cutting patterns for 12 meter stocks are listed below.

Figure 1. Example of Cutting Patterns to Stocks

The patterns above can be written as follows.
P1=6(1.9)+0(2.2)+0(2.7)+0(3.1)
P2=2(1.9)+2(2.2)+0(2.7)+1(3.1)
P3=0(1.9)+0(2.2)+1(2.7)+3(3.1)
For Pattern1 (P1), the sum of the cuts is 11.6m. Thus the waste is 0.4m.

Pattern2 (P2) has waste of 0.7m, and Pattern3 (P3) does not create any waste.
It is easily understood that the total length of any patterns must be less than

or equal to the stock length, in this case is 12 meters.
We can list all patterns in the following table.
 p11l1 + p12l2 + … + p1nln
 p21l1 + p22l2 + … + p2nln
 .
 .
 pm1l1 + pm2l2 + … + pmnln

For the example of requirements in Table 1, counts of all combinations is as
follows. (Kenneth H. Rosen, 2007)

C(p,m)=p!/(m!*(p-m)!)
with p! = 1*2*3*...*p
For p=9 and m=3 the calculation will give us 84 combinations. However,

not all combinations are valid. After scrutinizing them, the following is the list of
all valid patterns.

Table 2. List of All Possible Patterns in the Example

Pattern Quantity l1 = 1.9 m l2 = 2.2m l3 = 2.7m l4 = 3.1m Waste

1 x1 6 0 0 0 0.6
2 x2 5 1 0 0 0.3

3 x3 4 2 0 0 0
4 x4 4 0 1 0 1.7
5 x5 4 0 0 1 1.3

6 x6 3 1 1 0 1.4
7 x7 3 1 0 1 1
8 x8 3 0 2 0 0.9
9 x9 3 0 1 1 0.5

10 x10 3 0 0 2 0.1

Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

 961

11 x11 2 3 0 0 1.6
12 x12 2 2 1 0 1.1

13 x13 2 2 0 1 0.7
14 x14 2 1 2 0 0.6
15 x15 2 1 1 1 0.2

16 x16 2 0 3 0 0.1
17 x17 1 4 0 0 1.3
18 x18 1 3 1 0 0.8
19 x19 1 3 0 1 0.4
20 x20 1 2 2 0 0.3
21 x21 1 1 0 2 1.7
22 x22 1 0 2 1 1.6
23 x23 1 0 1 2 1.2
24 x24 1 0 0 3 0.8
25 x25 0 5 0 0 1
26 x26 0 4 1 0 0.5
27 x27 0 4 0 1 0.1
28 x28 0 3 2 0 0
29 x29 0 2 1 1 1.8
30 x30 0 2 0 2 1.4
31 x31 0 1 3 0 1.7
32 x32 0 1 2 1 1.3
33 x33 0 1 1 2 0.9
34 x34 0 1 0 3 0.5
35 x35 0 0 4 0 1.2
36 x36 0 0 3 1 0.8
37 x37 0 0 2 2 0.4
38 x38 0 0 1 3 0

There are 38 possible patterns in the above example. We can use each

pattern multiple times to fulfil the requirements. The quantity xj is the number of

how many times a specified pattern is used in the solution, j = 1, 2, …, 38. Total
length of stocks to cut is:

ky = y (x1 + x2 + … + xm)

k = number of stocks to cut
y = lengths of the stock
12k = 12 (x1 + x2 + … + xm)

Or, in general,
z = y (x1 + x2 + … + xm)

Without effecting the optimization, we can write the problem as minimizing
the number of stocks to cut.

 min Z = x1 + x2 + … + xm

Or, alternatively, the problem can be stated as to minimize the wastage
produced by the cut.

 m

 min W = ∑ wjxj

Santoso, Haerudin

962

 j=1

Constraints:
 m

 ∑ aijxi = Ni for i = 1, 2, …, n
 j=1

 aij ≥ 0, xj ≥ 0,
 aij, xj are integers

 j = 1, 2, …, m

where:
 n = number of requirement types

 m = number of all possible patterns
 wj = waste of pattern j

 aij = number of pieces of item i in pattern j

 xj = number of pattern j used in the solution
 Ni = number requirements of item i

The approach on this study emphasizes on creating all possible patterns as
the search space, and uses multiple numbers of the patterns as the base of
optimization. Duplications are allowed in a search space. The way to cut a stock
into products is called a pattern.
Encoding

Encoding is a part of GA that is tailored to the problem. Any implementer
of GA shall find the way to represent the problem that GA can understand and
thereafter can help to solve (Mitchell, 1999). In this study, the encoding is as
follows.

All the stocks to cut are expressed in z.
 z = x1 + x2 + … + xm
subject to:
 m
 ∑ xij ≥ Ni

 j=1
where:
 z = number of stocks to cut
 xj = number of stocks to cut with pattern j
 xij = number of i-th product in j-th pattern
 Ni = quantity required for i-th product
 i = 1, 2, …, n
 j = 1, 2, …, m
Other trivial requirements
 xij ≥ 0, integer
 Ni ≥ 0, integer
The study uses chromosome encoding as follows
 [x1, x2, …, xm]

with xj is defined as above, j = 1, 2, …, m.
Initial Population

Initial population is as generation 0 of the iteration in GA. The task includes
choosing initial patterns, and assigning random quantities for those patterns. The

Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

 963

process is repeated until a certain number of valid solutions are generated. Detail
process is in the following.

For each stock, a random number between 1 to m is generated to choose the
pattern to use. After getting the pattern, the function uses random number again
to assign quantity for this pattern.

For example, for 38 patterns in Table 2 a random number gives 3 for the
pattern and 14 for the quantity. The chromosome will be:

[0-0-14-0]
For the next pattern, again another 2 random numbers are required, one for

the pattern and one for the quantity. After a certain number of patterns are
assigned, the chromosome is ready as one individual in the population. Example
of a chromosome is as below.

[0-0-14-0-0-0-0-36-0-0-0-0-0-0-0-0-0-3-0-0-0-0-0-0-0-0-0-1-0-0-0-0-30-0-0-0-0-
0]
Validator

Chromosomes in initial population are not necessary optimal, but must be
valid solutions for the problem. The initial chromosomes as created above may
not be valid ones. To be valid, it must satisfy the following.

 m
 ∑ xij ≥ Ni i=1, 2, …, n

 j=1
For this, the algorithm needs to build a validator. The function of a validator

is to make sure that the chromosome is valid to be a candidate solution.
Moreover, the validator in this case acts also as an optimizer to some extent. The
validator has two sub functions: Adder and Reducer.

Adder will check whether all product requirements are satisfied by the
chromosome. If not, it will take patterns randomly to add the difference until all
required items fulfilled. Then, the reducer searches a pattern, and checks whether
reducing the pattern still make it a valid chromosome. If it is the case, the reducer
will subtract some amount from the quantity of the selected gene.

After all chromosomes are validated, it is time now to calculate the fitness
of each chromosome using fitness function.
Fitness Function and Roulette Wheel

To know which individuals are strong, GA needs to implement a fitness
function. The function will ascertain each chromosome in the population and
attach a fitness index to them (Kumar, 2015). The fitness shall reflect the aim of
the solution; in this case is to minimize the wastage. Again, GA leaves the
definition of the fitness function to the implementer to choose or create his own.

In this study, the following fitness function is used.
 fitness = 1 – cost
The cost is defined as one of the three functions below.
a) Cost Function 1
The cost function to measure the wastage is as below.

cost =
1

m
 ∑

𝑤𝑗

𝐿𝑗

𝑚

𝑗=1

Santoso, Haerudin

964

where:
 wj = wastage of j-th pattern
 Lj = length of the stock of j-th pattern
 j = 1, 2, …, m
 m = number of patterns
The above cost function is for multiple stock lengths. For single stock length,

all Lj are the same for all patterns.
b) Cost Function 2

cost = (
1

m + 1
) (∑

𝑤𝑗

𝐿𝑗

𝑚

𝑗=1

+ ∑
Vj

𝐿𝑗

𝑚

𝑗=1

)

where:
 Vj = number of stocks with wastage
 The first term is to calculate wastage as the whole, as this is the aim of the

algorithm. The second term is to put emphasis on minimizing number of stocks
with wastage. Less stocks with wastage is more desirable as it means the wastage
can be concentrated on a few stocks. For instance, from 100 stocks used, 5 stocks
with 1m wastage is better than 10 stocks with 0.5m wastage each, although the
number of the stocks and the total wastage are the same.

c) Cost Function 3
In cost function 3, the second term is multiplied by one third of m, to make

the following cost function.

cost = (
1

𝑚 + (𝑚 3⁄)
) (∑

𝑤𝑗

𝐿𝑗

𝑚

𝑗=1

+
𝑚

3
∑

𝑉𝑗

𝐿𝑗

𝑚

𝑗=1

)

All notations have the same meaning as the above. With this, the emphasis
on the second term is always proportionate (that is, one third) to the number of
genes in one chromosome.

Each chromosome has fitness that ranges between 0 (the weakest) and 1 (the
strongest). To normalize this as a roulette wheel, the algorithm will sum up all
the values and then divide each with the sum. This will linearize the fitness to be
proportional relative to other chromosomes. Next, the algorithm will put this
proportion one on top of the other that the last chromosome will have a value of
1.

With the help of roulette wheel as above, we are ready to implement GA
operators.
GA Operators

This study uses three GA operators to build new populations; namely
crossover, mutation, and elitism.

a) Crossover
Most literatures discuss the crossover as one-split and two-split types

(Mitchell, 1999)(Saxena, 2016)(Amjad et al., 2018). The process of one-split
crossover is as follows. Pick 2 chromosomes, split at one common point. Take
first part of the chromosome from first parent, and take the second part from the
second parent.

Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

 965

Process of two-split crossover is the same, only that the common points are
two instead of one. Pick the first part from the first parent, the second part from
the second parent, and the third part is again from the first parent.

In this study we use Uniform Order Crossover (UOCX). It works by copying
all the genes from parent1 to the child. A random number afterward is generated
between 1 and m. The gene from parent2 at this random position is then copied
to the child.

This crossover may drastically take the child far away from the parents. To
reduce the effect of crossover, Half UOCX is also implemented.

The process of Half UOCX is similar to that of UOCX with slight
modifications. Instead of copying the gene from the parent2, the gene is replaced
by the median of the two parents.

b) Mutation
Mutation requires only one parent (Mitchell, 1999)(Amjad et al., 2018). It

changes several genes to become a new individual. The process is as follows: take
randomly a gene, and add or subtract an amount to it. Repeat for a certain
number of genes. Two random numbers are required here.

1. The first is to choose the genes.
2. The second random number is to get an amount to add or to subtract

from the gene. This amount should be small enough that it does not
destroy the optimality. The default rate is 0.005 from the total quantity
requirements.

For example in Table 2 the total requirements is 150+120+200+100=570. The
limit amount for 0.005 is 2 (integer, rounded down). The random number
generated is therefore between -2 and +2.

This amount is added to or subtracted from the quantity of the specified
gene. If the result is negative, the quantity is set to zero.

The algorithm repeats the process until a certain number of genes are
modified. After the process, the validator shall be called later to make sure the
solution is valid.

c) Elitism
Elitism is preserving chromosomes to the next generation (Mitchell, 1999).

These chromosomes are copied to the next generation without any changes.
d) Combination of Genetic Operators

In this study several ways are implemented to combine the three genetic
operators.
Crossover Only

New generation is constructed by means of crossover operator. Mutation is
not used. Elitism is used when crossover rate is less than 1.
Mutation Only

Only mutation operator is used to construct new generation. Crossover is
not used. Elitism is used when the mutation rate is less than 1.
Separate Crossover and Mutation

Part of the new generation is constructed by crossover, the other part are by
mutation.

Santoso, Haerudin

966

Figure 2. Separate Crossover and Mutation, Part of the New Population is

Generated by Crossover, and Other Part is by Mutation
Crossover Then Mutation

The process creates intermediate population as a product of crossover and
then applies mutation to this intermediate population. Mutation is not
necessarily applied to 100% of the intermediate population. Part mutation is
permissible.

Figure 3. Crossover Then Mutation, an Intermediate Population is
Generated Entirely by Crossover, Mutation is then Operated on Intermediate

Population
Iteration
The full cycle of the GA process is as below.

1. Get Parameters and Requirements.
Parameters and requirements are stored in files.

2. Create Search Space.
3. Create Initial Population.
4. Running Validator.

Check whether the population fulfills the requirements.
5. Calculate the Fitness.
6. Check to Stop.

Process will stop when the fitness value is matching the requirement, or
the iteration is exceeding the maximum allowed.

7. Create New Generation.
8. Go to step (4).

Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

 967

RESULTS
The last task in the study is to run the programs on test-case data and

observe the results. The data requirement files are taken as disperse as possible.
There are 10 data requirements files as the test cases.

The parameter files are tweaked first to get the best result. Below are the
parameters used to run the program.

Figure 4. Parameter file

The program are executed 20 times to get the best result. Each run may give
different results as the random numbers are always different. The best results are
as follows.

Table 3. Test Results for Fitness Function 1

Run
Waste

(m)
Stock used

(pcs)
Waste

(%)
Stock with
waste (pcs)

Run time
(s)

req01 29 119 2.03 83 1.0
req02 275 1083 2.12 482 1.4
req03 41 120 2.63 71 2.7
req04 358 1029 2.68 679 4.7
req05 73 178 2.93 158 6.5
req06 541 1290 3.00 1212 11.6
req07 117 212 3.94 206 13.6
req08 837 1560 3.58 1521 23.8
req09 217 315 4.31 224 74.9
req10 1405 2788 3.15 1923 78.7

Table 4. Est Results for Fitness Function 2

Run
Waste

(m)
Stocks used

(pcs)
Waste

(%)
Stocks with
waste (pcs)

Run time
(s)

req01 41 120 2.85 72 1.0
req02 287 1084 2.21 632 1.5
req03 41 120 2.63 78 2.9
req04 371 1030 2.77 733 4.8
req05 73 178 2.93 137 6.5
req06 597 1294 3.30 1070 11.3
req07 117 212 3.68 200 13.5
req08 837 1560 3.58 1423 23.9
req09 249 317 4.91 225 76.7
req10 1261 2779 2.84 1915 76.5

crossoverRate=1
crossoverItemRate=0.1
crossoverHalf=no
mutationRate=0.1
mutationItemRate=0.05
mutationQtyRate=0.07
crossoverThenMutate=yes
population=100
initPatternRate=0.3
maxIteration=1000
targetFitness=1

Santoso, Haerudin

968

Table 5. Test Results for Fitness Function 3

Run
Waste

(m)
Stocks used

(pcs)
Waste

(%)
Stocks with
waste (pcs)

Run time
(s)

req01 65 122 4.44 56 1.0
req02 263 1082 2.03 269 1.4
req03 145 128 8.71 49 2.7
req04 553 1044 4.07 469 4.8
req05 507 209 17.3 135 6.5
req06 933 1318 5.06 1002 11.5
req07 462 235 13.1 189 14.7
req08 1107 1578 4.68 1327 24.8
req09 2137 435 30.7 341 71.7
req10 13853 3566 24.3 2531 119.5

DISCUSSION
The following is the observations from running the tests.
1. There are many fine tunes of parameters should be done to GA program.

Running GA with non-optimal parameters may yield bad results.
However, optimizing parameters in GA is a tricky task as changes in one
parameter may affect the balance of other parameters. Some wrapper
program might help in determining best parameters for GA program.

2. Sufficient number of iterations and also several runs of the program are
needed to get satisfactorily results from GA program. Run GA program
several times will get different results as the program uses random
numbers to generate the results. The implementer should run the
program multiple times and grab the fittest result.

3. Fitness function is an interesting feature of GA. One can change the aim
only by changing fitness function. In this study three fitness functions
are implemented. Other fitness functions can be incorporated quickly
without changing much code, provided that the encoding is the same.

4. The performance of GA varies according to the number of patterns
found. The more patterns it creates, the slower the performance is.

5. Although basic steps in GA are quite established, the implementations
vary considerably from problem to problem. This makes GA difficult to
take off, as general solution cannot be built. This is a challenge for GA
practitioners.

6. The percentage of the waste is quite small especially for fitness function
1, ranging from 2.03% to 4.31%. Other fitness functions give different
results as the aim is not merely the waste.

7. Fitness function 3 has strange behaviour in this study. The aim of fitness
3 is to get minimum number of stocks with waste. The numbers are
correct for 8 requirements. However, for the requirement 9 and 10 the
numbers are quite reversing. In these two requirements, fitness 3 has
more stocks with waste compared to fitness 1 and fitness 2. It needs
more study to find out the cause.

Internasional Journal of Integrative Sciences (IJIS)
Vol.2, No.7, 2023: 957-970

 969

8. Overall the program can give the solution requested: (1) the patterns to
cut Stocks into Products, and (2) the number of steel bars the company
has to purchase to fulfill the requirements.

FURTHER STUDY
Further works on this topic are envisaged as below.
1. Mutation turns out to be the dispersing function in the GA and crossover

is the converging function. One may wish to reverse the order, mutation
first and then crossover.

2. Better encoding should be implemented, as the running time is slow
when a lot of patterns are created.

3. Wrapper program can be implemented before GA program to select best
parameters to use.

REFERENCES
Abuhassan, I. A. O., & Nasereddin, H. H. O. (2011). Cutting Stock Problem :

Solution Behaviors. International Journal of Recent Research and Applied Studies,
6(March), 429–433.
https://www.researchgate.net/publication/281120697_CUTTING_STOCK
_PROBLEM_SOLUTION_BEHAVIORS

Amjad, M. K., Butt, S. I., Kousar, R., Ahmad, R., Agha, M. H., Faping, Z., Anjum,
N., & Asgher, U. (2018). Recent Research Trends in Genetic Algorithm Based
Flexible Job Shop Scheduling Problems. Mathematical Problems in Engineering,
2018. https://doi.org/10.1155/2018/9270802

Delorme, M. (2017). Mathematical models and decomposition algorithms for
cutting and packing problems. Dottorato Di Ricerca in Automatica e Ricerca
Operativa Ciclo. https://doi.org/10.1007/s10288-017-0365-z

Feo, T. A., & Resende, M. G. C. (1995). Greedy Randomized Adaptive Search
Procedures. Journal of Global Optimization, 6(2), 109–133.
https://doi.org/10.1007/BF01096763

Kenneth H. Rosen. (2007). Discrete Mathematics and Its Applications. In Mc Graw
Hill (6th ed.). Mc Graw Hill. https://doi.org/10.13109/9783666538452.10

Kokten, E. S., & Sel, Ç. (2022). A cutting stock problem in the wood products
industry: a two-stage solution approach. International Transactions in
Operational Research, 29(2), 879–907. https://doi.org/10.1111/itor.12802

Kumar, D. (2015). Comparative Study of Genetic Algorithm Performed in a
Single Generation for two Different Fitness Functions Technique f(x) = x^2
and f(x) = x^2+1. International Journal of Computer Applications, 128(17), 7–15.
https://doi.org/10.5120/ijca2015906572

Lazar, M., & Zuazua, E. (2022). Greedy Search Of Optimal Approximate Solutions.
Mitchell, M. (1999). An Introduction to Genetic Algorithms. In A Bradford Book

The MIT Press. A Bradford Book The MIT Press.
https://doi.org/10.1162/artl.1997.3.63

Ogunranti, G. A., & Oluleye, A. E. (2016). Minimizing waste (off-cuts) using
cutting stock model: The case of one dimensional cutting stock problem in
wood working industry. Journal of Industrial Engineering and Management,

Santoso, Haerudin

970

9(3), 834–859. https://doi.org/10.3926/jiem.1653
Pierini, L. M., & Poldi, K. C. (2021). Lot sizing and cutting stock problems in a

paper production process. Pesquisa Operacional, 41(Special issue).
https://doi.org/10.1590/0101-7438.2021.041s1.00235094

Porumbel, D. (2022). Projective Cutting-Planes for Robust Linear Programming
and Cutting Stock Problems. INFORMS Journal on Computing, 34(5), 2736–
2753. https://doi.org/10.1287/ijoc.2022.1160

Santoso, B., Prasetiyo, S. M., & Wijoyo, A. (2019). Meminimalkan Sisa
Pemotongan Besi Beton dalam Proyek Konstruksi. Jurnal Informatika
Universitas Pamulang, 4(2), 73.
https://doi.org/10.32493/informatika.v4i2.3204

Saxena, A. (2016). Review of Crossover Techniques for Genetic Algorithms.
International Journal of Trend in Research and Development, 3(5), 347–349.

Yan Chen, Xiang Song, Djamila Ouelhadj, Y. C. (2017). A heuristic for the skiving
and cutting stock problem in paper and plastic film industries. International
Transactions in Operational Research, 26(1), 157–179.

