Classification of Plant Leaf Diseases Using Convolutional Neural Networks
DOI:
https://doi.org/10.55927/ijis.v4i1.13478Keywords:
Plant Disease Classification, Convolutional Neural Network (CNN), Leaf Image Analysis, Deep Learning in Agriculture, Data Preprocessing TechniquesAbstract
Leaf diseases significantly impact agricultural productivity and economic stability. This study explores the use of Convolutional Neural Networks (CNN) for classifying plant leaf diseases, addressing limitations of traditional visual inspection methods. Utilizing a Kaggle dataset with three classes (Healthy, Powdery, Rust), data preprocessing techniques such as resizing, augmentation, and normalization enhanced model performance. The CNN model achieved 95% accuracy in classification, demonstrating its capability to detect intricate patterns on leaf surfaces. Despite challenges like dataset imbalance and limited disease categories, the research highlights the potential of integrating CNN with web or mobile platforms to aid farmers in disease identification. These findings align with previous studies and underscore the importance of deep learning in agricultural innovation. Future research should focus on expanding datasets, exploring advanced architectures, and validating models under real-world conditions to maximize utility and accuracy in diverse environments
Downloads
References
Bastari, A. J., & Cherid, A. (2023). Klasifikasi Penyakit Tanaman Tomat Menggunakan Convolutional Neural Network dan Implementasi Model H5 Pada Aplikasi Desktop. Simkom, 8(2), 199–207. https://doi.org/10.51717/simkom.v8i2.194
Guan, H., Fu, C., Zhang, G., Li, K., Wang, P., & Zhu, Z. (2023). A lightweight model for efficient identification of plant diseases and pests based on deep learning. Frontiers in Plant Science, 14(July), 1–13. https://doi.org/10.3389/fpls.2023.1227011
Keputusan Dirjen Penguatan Riset dan Pengembangan Ristek Dikti, S., Wicaksono, G., & Andryana, S. (2018). Terakreditasi SINTA Peringkat 4 Aplikasi Pendeteksi Penyakit Pada Daun Tanaman Apel Dengan Metode Convolutional Neural Network. 3(1), 9–16.
Kurniawan, R. A., Sunyoto, A., & Nasiri, A. (2021). Pengaruh Arsitektur Convolutional Neural Network Untuk Klasifikasi Penyakit Daun Tomat (Effect of Convolutional Neural Network Architecture for Tomato Leaf Disease Classification). 1–6. https://www.kaggle.com/datasets/emmarex/plantdiseas
Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17(1), 1–18. https://doi.org/10.1186/s13007-021-00722-9
Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. http://arxiv.org/abs/1712.04621
Putra, I. P., Rusbandi, R., & Alamsyah, D. (2022). Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network. Jurnal Algoritme, 2(2), 102–112. https://doi.org/10.35957/algoritme.v2i2.2360
Tugrul, B., Elfatimi, E., & Eryigit, R. (2022). Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review. Agriculture (Switzerland), 12(8). https://doi.org/10.3390/agriculture12081192
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Teti Desyani, Muhammad Mahromi, Fazzil Alfis Ramadhan, Muhammad Alfiansyah, Muhammad Iqbal Maulana, Perani Rosyani

This work is licensed under a Creative Commons Attribution 4.0 International License.