Formulation of Nanostructured Lipid Carrier from a Mixture of Red Palm Oil and Palm Stearin

Authors

  • Abdi Redha Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo
  • Saniah Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo
  • Iwan Rusiardy Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo
  • Muflihah Ramadhia Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo
  • Mawardi Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo
  • D. U. M. Susilo Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo
  • Fenny Imelda Study Program of Integrated Plantation Product Processing, Department of Agricultural Technology, State Polytechnic of Pontianak, West Borneo

DOI:

https://doi.org/10.55927/ijis.v2i5.4150

Keywords:

Β-Carotene, Nanostructured Lipid Carrier, Palm Stearin, Red Palm Oil, Tween 80

Abstract

Red palm oil can be a source of beneficial ingredients in various foods due to its high total carotene level. This work examined the influence of red palm oil to palm stearin ratio on the Nanostructured Lipid Carrier's turbidity, transmittance, viscosity, β-carotene content, color lightness, and hue. For this purpose, Nanostructured Lipid Carriers were prepared by hot homogenizing red palm oil and palm stearin at several ratios (1:9, 2:8, 3:7, 4:6, and 5:5 (w/w)). According to the present investigation, the ratio of red palm oil to palm stearin primarily affected the turbidity, transmittance, viscosity, β-carotene concentration, color brightness, and hue of NLCs. Furthermore, the study found that adding red palm oil significantly raised the NLC's β-carotene content and turbidity. The ratio of red palm oil to palm stearin that produced the most stable NLC was 5:5 (w/w)

Downloads

Download data is not yet available.

References

El-Hadad, N., Abd El-Aal, M. H., Youssef, M. M., & Abou-Gharbia, H. A. (2010). Red palm olein: Characterization and utilization in formulating novel functional biscuits. JAOCS, Journal of the American Oil Chemists’ Society, 87(3), 295–304. https://doi.org/10.1007/s11746-009-1497-x

Fletcher, P. D. I., & Morris, J. S. (1995). Turbidity of oil-in-water microemulsion droplets stabilised by nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 98(1–2), 147–154. https://doi.org/10.1016/0927-7757(95)03107-O

Gammone, M. A., Riccioni, G., & D’Orazio, N. (2015). Carotenoids: potential allies of cardiovascular health? Food & Nutrition Research, 59, 26762. https://doi.org/10.3402/fnr.v59.26762

Ghasemiyeh, P., & Mohammadi-Samani, S. (2018). Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Research in Pharmaceutical Sciences, 13(4), 288. https://doi.org/10.4103/1735-5362.235156

Gloria, N. F., Soares, N., Brand, C., Oliveira, F. L., Borojevic, R., & Teodoro, A. J. (2014). Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Research, 34(3), 1377–1386.

Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B., & Wani, A. A. (2015). Chemistry, encapsulation, and health benefits of β-carotene - A review. Cogent Food & Agriculture, 1(1), 1018696. https://doi.org/10.1080/23311932.2015.1018696

Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1–3), 210–216. https://doi.org/10.1016/j.colsurfa.2007.08.005

Hutchings, J. B. (1994). Food Colour and Appearance. Springer US. https://doi.org/10.1007/978-1-4615-2123-5

Karn-orachai, K., Smith, S. M., Phunpee, S., Treethong, A., Puttipipatkhachorn, S., Pratontep, S., & Ruktanonchai, U. R. (2014). The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers. Journal of Microencapsulation, 31(6), 609–618. https://doi.org/10.3109/02652048.2014.911374

Kawata, A., Murakami, Y., Suzuki, S., & Fujisawa, S. (2018). Anti-inflammatory Activity of β-Carotene, Lycopene and Tri-n-butylborane, a Scavenger of Reactive Oxygen Species. In Vivo (Athens, Greece), 32(2), 255–264. https://doi.org/10.21873/invivo.11232

McClements, D. J. (2015). Food Emulsions. CRC Press. https://doi.org/10.1201/b18868

McClements, D. J., & Rao, J. (2011). Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285–330. https://doi.org/10.1080/10408398.2011.559558

Mezzomo, N., & Ferreira, S. R. S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry, 2016, 1–16. https://doi.org/10.1155/2016/3164312

Pan, Y., Tikekar, R. V., & Nitin, N. (2016). Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. International Journal of Pharmaceutics, 511(1), 322–330. https://doi.org/10.1016/j.ijpharm.2016.07.019

Pramesti, A. (2014). Optimasi Proses Formulasi Minuman Nanoemulsi Minyak Sawit. Institut Pertanian Bogor.

Prieto, C., & Calvo, L. (2013). Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing. Journal of Applied Chemistry, 2013, 1–10. https://doi.org/10.1155/2013/930356

Redha, A., & Susilo, D. U. M. (2020). Formulasi Nanoemulsi Oleoresin Jahe Merah Berbasis Lesitin Dan Stabilitasnya Selama Penyimpanan. Agrofood, 2(2), 1–8.

Rodriguez‐Amaya, D. B. (2015). Food Carotenoids: chemistry, biology, and technology. Wiley. https://doi.org/10.1002/9781118864364

Rohmah, M., Raharjo, S., Hidayat, C., & Martien, R. (2019). Formulasi dan Stabilitas Nanostructured Lipid Carrier dari Campuran Fraksi Stearin dan Olein Minyak Kelapa Sawit. Jurnal Aplikasi Teknologi Pangan, 8(1). https://doi.org/10.17728/jatp.3722

Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76, 735–750. https://doi.org/10.1016/j.foodres.2015.07.047

Shah, N. V., Seth, A. K., Balaraman, R., Aundhia, C. J., Maheshwari, R. A., & Parmar, G. R. (2016). Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. Journal of Advanced Research, 7(3), 423–434. https://doi.org/10.1016/j.jare.2016.03.002

Silva, A. C., González-Mira, E., García, M. L., Egea, M. A., Fonseca, J., Silva, R., Santos, D., Souto, E. B., & Ferreira, D. (2011). Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 86(1), 158–165. https://doi.org/10.1016/j.colsurfb.2011.03.035

Sue, T. T., & Pantzaris, T. P. (2017). Pocketbook of Palm Oil Uses. Malaysian Palm Oil Board.

Triplett, M. D., & Rathman, J. F. (2009). Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. Journal of Nanoparticle Research, 11(3), 601–614. https://doi.org/10.1007/s11051-008-9402-3

Weiss, J., Decker, E. A., McClements, D. J., Kristbergsson, K., Helgason, T., & Awad, T. (2008). Solid Lipid Nanoparticles as Delivery Systems for Bioactive Food Components. Food Biophysics, 3(2), 146–154. https://doi.org/10.1007/s11483-008-9065-8

Witayaudom, P., & Klinkesorn, U. (2017). Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat. Journal of Colloid and Interface Science, 505, 1082–1092. https://doi.org/10.1016/j.jcis.2017.07.008

Zheng, M., Falkeborg, M., Zheng, Y., Yang, T., & Xu, X. (2013). Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 430, 76–84. https://doi.org/10.1016/j.colsurfa.2013.03.070

Zhu, J., Zhuang, P., Luan, L., Sun, Q., & Cao, F. (2015). Preparation and characterization of novel nanocarriers containing krill oil for food application. Journal of Functional Foods, 19, 902–912. https://doi.org/10.1016/j.jff.2015.06.017

Ziani, K., Fang, Y., & McClements, D. J. (2012). Fabrication and stability of colloidal delivery systems for flavor oils: Effect of composition and storage conditions. Food Research International, 46(1), 209–216. https://doi.org/10.1016/j.foodres.2011.12.017

Downloads

Published

2023-05-30

How to Cite

Abdi Redha, Saniah, Iwan Rusiardy, Muflihah Ramadhia, Mawardi, D. U. M. Susilo, & Fenny Imelda. (2023). Formulation of Nanostructured Lipid Carrier from a Mixture of Red Palm Oil and Palm Stearin . International Journal of Integrative Sciences, 2(5), 543–552. https://doi.org/10.55927/ijis.v2i5.4150

Issue

Section

Articles