Genetic Pharmacotherapy

Authors

  • Rehan Haider Riggs Pharmaceutical Karachi, Department of Pharmacy, University of Karachi

DOI:

https://doi.org/10.55927/ijsmr.v1i4.4374

Keywords:

GPCRs, Computer-Aided Drug Discovery, Depression, Drug Resistance, Gene Polymorphism

Abstract

In current drug development, proof-of-concept—determining whether a ligand engaging its target is likely to be therapeutic—requires specific ligands. This presents a catch-22, as the motivation to develop ligands requires proof-of-concept studies that cannot be conducted without ligands. A strategy we term genetic pharmacotherapy—a refinement of genetic blockade focused on drug-gable targets—obviates the catch-22 by enabling proof-of-concept studies before the development of specific ligands via genetic means in mouse models. In this strategy, which could help avert investment in molecular entities that will ultimately prove therapeutically efficacious, a gene is conditionally down-regulated via a molecular switch in adult mice. Both the precise temporal control of the intervention and the consequent change in the target protein function parallels the administration of drugs, with the additional advantage of perfect specificity. Moreover, genetic pharmacotherapy overcomes the impediment of the blood-brain barrier, which makes developing ligands for psychiatric disorders particularly challenging                                                                                                       

Downloads

Download data is not yet available.

References

Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nature Rev Genet, Vol. 2, No. 10, pp. 743-755

Gingrich, J.A. and Hen, R. (2000) The broken mouse: the role of development, plasticity, and environment in the interpretation of phenotypic changes in knockout mice. Curr. Opin. Neurobiol., Vol. 10, No. 1, pp. 146-152

Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring. Genesis, Vol. 26, No. 2, pp. 99-109

Sternberg, N. and Hamilton, D. (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J. Mol. Biol., Vol. 150, No. 4, pp. 467-486

Lakso, M., Sauer, B., Mosinger, B., Jr., Lee, E.J., Manning, R.W., YU, S.H., Mulder, K.L. and Westphal, H. (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. PNAS, Vol. 89, No. 14, pp. 6232-6236

Orban, P.C., Chui, D. and Marth, J.D. (1992) Tissue- and site-specific DNA recombination in transgenic mice. PNAS, Vol. 89, No. 15, pp. 6861-6865

GU, H., Marth, J.D., Orban, P.C., Mossman, H. and Rajewsky, K. (1994) Deletion of a DNA polymerase beta gene segment in T cells using cell type-specific gene targeting. Science, Vol. 265, No. 5168, pp. 103-106

Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. and Nishimura, Y. (1997) 'Green mice' as a source of ubiquitous green cells. FEBS Lett., Vol. 407, No. 3, pp. 313-319

Feil R., Brocard J., Marquez B., LeMeur, M., Metzger D. and Chambon P. (1996) Ligand activated site-specific recombination in mice. PNAS, Vol. 93, No. 20, pp. 10887- 10890

Metzger, D. and Chambon, P. (2001) Site- and time-specific gene targeting in the mouse. Methods, Vol. 24, No. 1, pp. 71-80

Metzger, D., Clifford, J., Chiba, H. and Chambon, P. (1995) Conditional site-specific

Recombinase. PNAS, Vol. 92, No. 15, pp. 6991-6995

Giguère, V. (2003) In Bradshaw, R. A. and Dennis, E. A. (eds.), Handbook of Cell Signaling, Volume 3. Academic Press, Amsterdam, Vol. 3, pp. 35-38.

Indra, A.K., Warot, X., Brocard, J., Bornert, J.M., Xiao, J.H., Chambon, P. and Metzger, D. (1999) temporally controlled site-specific mutagenesis in the basal layer of the epidermis:

Comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and CreER(T2) recombinases. Nucleic Acids Res., Vol. 27, No. 22, pp. 4324-4327

Lewandoski, M. (2001) Conditional control of gene expression in the mouse. Nature Rev Genet, Vol. 2, No. 10, pp. 743-755

Hayashi, S. (2002) Efficient Recombination in Diverse Tissues by a Tamoxifen-Inducible Form of Cre: A Tool for Temporally Regulated Gene Activation/Inactivation in the Mouse. Dev. Biol., Vol. 244, No. 2, pp. 305-318

Kellendonk, C., Tronche, F., Casanova, E., Anlag, K., Opherk, C. and Schutz, G. (1999) Inducible site-specific recombination in the brain. J. Mol. Biol., Vol. 285, No. 1, pp. 175-182

Skarnes, W.C., Rosen, B., West, A.P., Koutsourakis, M., Bushell, W., Iyer, V., Mujica, A.O., Thomas, M., Harrow, J., Cox, T., Jackson, D., Severin, J., Biggs, P., Fu, J., Nefedov,

M., de Jong, P.J., Stewart, A.F. and Bradley, A. (2011) A conditional knockout Resource for the genome-wide study of mouse gene function. Nature, Vol. 474, No.

, pp. 337-34217

Rosenbaum, J.S., Holford, N.H. and Sadée, W. (1984) Opiate receptor binding-effect relationship: sufentanil and etorphine produce analgesia at the mu-site with low fractional receptor occupancy. Brain Res., Vol. 291, No. 2, pp. 317-324

Samtani, M.N., Perez-Ruixo, J.J., Brown, K.H., Cerneus, D. and Molloy, C.J. (2009)

Pharmacokinetics and pharmacodynamics modeling of pegylated thrombopoietin

mimetic peptide (PEG-TPOm) after single intravenous dose administration in

healthy subjects. J Clin Pharmacol, Vol. 49, No. 3, pp. 336-350

Mamo, D., Kapur, S., Keshavan, M., Laruelle, M., Taylor, C.C., Kothare, P.A., Barsoum, P. and McDonnell, D. (2007) D2 Receptor Occupancy of Olanzapine Pamoate Depot Using Positron Emission Tomography: An Open-label Study in Patients with Schizophrenia. Neuro psychopharmacology, Vol. 33, No. 2, pp. 298-304

Copeland, R.A., Harpel, M.R. and Tummino, P.J. (2007) Targeting enzyme inhibitors in drug discovery. Expert Opin Ther Targets, Vol. 11, No. 7, pp. 967-97

Li, Q.-X., Tan, P., Ke, N. and Wong-Staal, F. (2007) Ribozyme technology for cancer gene target identification and validation. Adv. Cancer Res., Vol. 96, pp. 103-143

Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet., Vol. 21, No. 1, pp. 70-71

Ventura, A., Kirsch, D.G., McLaughlin, M.E., Tuveson, D.A., Grimm, J., Lintault, L.,

Newman, J., Reczek, E.E., Weissleder, R. and Jacks, T. (2007) Restoration of p53

Function leads to tumor regression in vivo. Nature, Vol. 445, No. 7128, pp. 661-665

Hodgkin, J. (1998) Seven types of pleiotropy. Int. J. Dev. Biol., Vol. 42, No. 3, pp. 501-505

Searls, D.B. (2003) Pharmacophylogenomics: genes, evolution, and drug targets. Nat Rev Drug Discov, Vol. 2, No. 8, pp. 613-623

Davidson, B.L. and McCray, P.B. (2011) Current prospects for RNA interference-based therapies. Nature Publishing Group, Vol. 12, No. 5, pp. 329-340.

Parascandola, J. (1981) The theoretical basis of Paul Ehrlich’s chemotherapy.

Keiser, M.J., Setola, V., Irwin, J.J., Laggner, C., Abbas, A.I., Hufeisen, S.J., Jensen, N.H., Kuijer, M.B., Matos, R.C., Tran, T.B., Whaley, R., Glennon, R.A., Hert, J., Thomas, K.L.H., Edwards, D.D., Shoichet, B.K. and Roth, B.L. (2009) Predicting new Molecular targets for known drugs. Nature, Vol. 462, No. 7270, pp. 175-181.

Peterson, R.T. (2008) Chemical biology and the limits of reductionism. Nat. Chem. Biol., Vol. 4, No. 11, pp. 635-638

Huffaker, S.J., Chen, J., Nicodemus, K.K., Sambataro, F., Yang, F., Mattay, V., Lipska, B.K., Hyde, Song, J., Rujescu, D., Giegling, I., Mayilyan, K., Proust, M.J., Soghoyan, A., Caforio, G., Callicott, J.H., Bertolino, A., Meyer-Lindenberg, A., Chang, J., Ji, Y., Egan, M.F., Goldberg, T.E., Klein man, J.E., Lu, B. and Weinberger, D.R. (2009) A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat. Med., Vol. 15, No. 5, pp. 509-518 32Miller, G. (2002), Science, Vol. 297, pp. 1116-1118.

Thompson, C.H., Kahlig, K.M. and George, A.L. (2011) SCN1A splice variants exhibit

divergent sensitivity to commonly used antiepileptic drugs. Epilepsia, Vol. 52, No. 5,

pp. 1000-1009

Mailman. (2007) GPCR functional selectivity has a therapeutic impact. Trends Pharmacol. Sci., Vol. 28, No. 8, pp. 390-396

Mailman, R.B., and Murthy, V. (2010) Ligand functional selectivity discovery. Neuropsychopharmacology,

Vol. 35, No. 1, pp. 345-346

Bello, E.P., Mateo, Y., Gelman, D.M., Noaín, D., Shin, J.H., Low, M.J., Alvarez, V.A.,

Lovinger, D.M. and Rubinstein, M. (2011) Cocaine super sensitivity and enhanced

Motivation for reward in mice lacking dopamine D2 auto receptors. Nat. Neurosci.,

Vol. 14, No. 8, pp. 1033-1038

Engblom, D., Bilbao, A., Sanchis-Segura, C., Dahan, L., Perreau-Lenz, S., Balland, B.,

Parkitna, J.R., Luján, R., Halbout, B., Mameli, M., Parlato, R., Sprengel, R., Lüscher,

C., Schütz, G. and Spanagel, R. (2008) Glutamate receptors on dopamine neurons

control the persistence of cocaine seeking. Neuron, Vol. 59, No. 3, pp. 497-508

Tsien, J.Z., Chen, D.F., Gerber, D., Tom, C., Mercer, E.H., Anderson, D.J., Mayford, M., Kandel, E.R. and Tonegawa, S. (1996) Sub-region- and cell type-restricted gene

knockout in mouse brain. Cell, Vol. 87, No. 7, pp. 1317-1326

Mayford, M., Bach, M.E., Huang, Y.Y., Wang, L., Hawkins, R.D. and Kandel, E.R. (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science, Vol. 274, No. 5293, pp. 1678-1683

Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS, Vol. 89, No. 12, pp. 5547-5551

Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lübbert, H. and Bujard, H. (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. PNAS, Vol. 93, No. 20, pp. 10933-10938

Cagniard, B., Beeler, J.A., Britt, J.P., McGeehan, D.S., Marinelli, M. and Zhuang, X. (2006) Dopamine scales performance in the absence of new learning. Neuron, Vol. 51, No. 5, pp. 541-547

Bond, C.T., Sprengel, R., Bissonnette, J.M., Kaufmann, W.A., Pribnow, D., Neelands, T., Storck, T., Baetscher, M., Jerecic, J., Maylie, J., Knaus, H.G., Seeburg, P.H. and Adelman, J.P. (2000) Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science, Vol. 289, No. 5486, pp. 1942-1946

Yamamoto, A., Lucas, J.J. and Hen, R. (2000) Reversal of neuro pathology and motor dysfunction in a conditional model of Huntington's disease. Cell, Vol. 101, No. 1, pp. 57-66

Kellendonk, C., Simpson, E.H., Polan, H.J., Malleret, G., Vronskaya, S., Winiger, V., Moore, H and Kandel, E.R. (2006) Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron, Vol. 49, No. 4, pp. 603-615

Guillin, O., Abi-Dargham, A. and Laruelle, M. (2007) Neurobiology of dopamine in

schizophrenia. Int. Rev. Neurobiol., Vol. 78, pp. 1-39

Simpson, E.H., Kellendonk, C. and Kandel, E. (2010) A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, Vol. 65, No. 5, pp. 585-59

Howes, O., Montgomery, A., Valli, I., Asselin, M., Murray, R., Grasby, P. and Mcguire, P. (2008) Striatal dopamine dysfunction predates the onset of schizophrenia and is linked to prodromal symptoms and neurocognitive function. Schizophr. Res., Vol. 102, No. 1-3, pp. 30-30

Fan, Q.-W., Zhang, C., Shokat, K.M. and Weiss, W.A. (2002) Chemical genetic blockade of transformation reveals dependence on aberrant oncogenic signaling. Curr. Biol., Vol. 12, No. 16, pp. 1386-1394

Min, Y., Adachi, Y., Yamamoto, H., Ito, H., Itoh, F., Lee, C.-T., Nadaf, S., Carbone, D.P. and Imai, K. (2003) Genetic blockade of the insulin-like growth Factor-I receptor: a promising strategy for human pancreatic cancer. Cancer Res., Vol. 63, No. 19, pp. 6432-6441

Pao, W. (2005) Epidermal Growth Factor Receptor Mutations, Small-Molecule Kinase Inhibitors, and Non-Small-Cell Lung Cancer: Current Knowledge and Future

Directions. J. Clin. Oncol., Vol. 23, No. 11, pp. 2556-2568

Hajduk, P.J., Huth, J.R. and Tse, C. (2005) Predicting protein druggability. Drug Discovery Today, Vol. 10, No. 23-24, pp. 1675-1682

Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., Djoumbou, Y., Eisner, R., Guo, A.C. and Wishart, D.S. (2011) DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res, Vol. 39, Database issue, pp. D1035-1041

Zhu, F., Han, B., Kumar, P., Liu, X., Ma, X., Wei, X., Huang, L., Guo, Y., Han, L., Zheng, C. and Chen, Y. (2010) Update of TTD: Therapeutic Target Database. Nucleic Acids Res, Vol. 38, No. Database issue, pp. D787-791

Brundtland, G.H. (2001) From the World Health Organization. Mental health: new

understanding, new hope. JAMA, Vol. 286, No. 19, pp. 2391

Conn, P.J., and Roth, B.L. (2008) Opportunities and Challenges of Psychiatric Drug

Discovery: Roles for Scientists in Academic, Industry, and Government Settings.

Neuropsychopharmacology, Vol. 33, No. 9, pp. 2048-2060

Downloads

Published

2023-05-30

How to Cite

Rehan Haider. (2023). Genetic Pharmacotherapy . International Journal of Scientific Multidisciplinary Research, 1(4), 313–330. https://doi.org/10.55927/ijsmr.v1i4.4374

Issue

Section

Articles