
1451

Analysis of Helmet Detection on Motor Drivers to Detect Traffic
Violations Using the You Only Look Once Method (Yolov4)

Nadia Hanifa Febriana
Universitas Pembangunan Nasional “Veteran” Jawa Timur
Corresponding Author: Nadia Hanifa Febriana nadiahf321@gmail.com

A R T I C L E I N F O A B S T R A C T

Keywords: YOLOv4, Deep Learning,
Darknet, Breach, Crash

Received : 2 June
Revised : 18 June
Accepted : 19 July

©2023 Febriana: This is an open-access
article distributed under the terms of the
Creative Commons Atribusi 4.0
Internasional.

According to statistical data, the number of deaths due to accidents in Indonesia in
2017 was 30,568 people. Efforts are being made to reduce traffic violations, especially
helmet violations. Helmets that must be worn by Indonesian motorcyclists must
comply with the Indonesian National Standard (SNI), but there are still many non-SNI
helmets circulating. A possible solution for monitoring is the identification of
motorbikes in traffic based on Deep Learning. In this study, the classification of
helmets was carried out using the YO-LO (You Only Look Once) method. The SNI
helmet detection system aims to make drivers more disciplined in completing their
riding equipment, especially helmets with SNI because this system requires riders to
wear helmets that comply with LLAJ or SNI (Indonesian National Standard) helmets
before riding. Trending Machine Learning and Deep Learning conduct research to
discover new methods and advanced architectures such as YOLO (You Only Look
Once). YOLO is an object detection network architecture that is claimed to be the
"fastest deep learning object detector" that prioritizes accuracy and speed. With
YOLOv4, violations by motorbike riders can be detected in real-time and whether the
riders recorded on the camera are directly wearing SNI helmets, non-SNI helmets or
not wearing helmets. The best accuracy for real-time motorcyclist violations with
YOLOv4 is the best mAP value of 99.69%

Volume 3, No 6, June (2023) DOI: https://doi.org/10.55927/mudima.v3i7.4931 Page: 1451–1460

JURNAL MULTIDISIPLIN MADANI (MUDIMA)
Homepage: https://journal.formosapublisher.org/index.php/mudima

ISSN: 2808-5639 (Online)
Research Article

mailto:nadiahf321@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://journal.formosapublisher.org/index.php/mudima

1452

INTRODUCTION
Based on data from the Central Bureau of

Statistics, the number of victims who died in
accidents in Indonesia was 30,568 in 2017. The
percentage of the toll increases every year to 3.72%
(BPS, 2017). The high number of victims who died
was followed by the high number of violations that
were often violated, one of which was not using a
helmet (KORLANTAS, 2019). Various attempts
have been made to reduce the number of traffic
violations, especially violations of not using a helmet
such as conducting outreach and raids on the
highway. However, this solution has a weakness
where limited human resources are inefficient in the
long term.

Helmets that are mandatory for Indonesian
motorcyclists should be helmets that comply with the
Indonesian National Standard (SNI), but there are
still many helmets circulating that do not comply.
Helmet is part of motorized vehicle equipment that
functions to protect the head in the event of a
collision which is used to protect the public from
possible serious head injuries due to motorcycle
accidents and to improve motorcycle driving safety
nationally. The government issues regulations
through the Minister of Industry Regulation
(Permen) No. 40/MINd/Per/6/2008 concerning the
Application of Indonesian National Standards (SNI)
for compulsory helmets for two-wheeled vehicles
and Ministerial Regulation number
No.40/MIND/PER/IV/2009 concerning delaying the
implementation of SNI helmets must. Then
reinforced Law number 22 of 2009 which requires all
motorcyclists to wear helmets in accordance with
SNI (Article 106, Paragraph 8). Helmets that comply
with the Indonesian National Standard (SNI) are
divided into 2 types, namely Open Face (Helmet
shape that covers the head up to the neck and covers
the front of the ears) and Full Face (Helmet shape
that covers the top of the head, neck and back).
mouth). And the helmet has a hard and smooth part
which is the outermost part of the helmet and the
inside which is installed to absorb impact energy, as
well as the face of the helmet which can protect part
or all of the face and is made of a clear layer. (BSN,
2010).

In overcoming these problems, the use of

technology is needed to be able to monitor
motorcyclists who commit violations. The branch of
computer science that supports this system is
computer vision. One solution that can be done for
traffic monitoring is the recognition of motorbike
objects in traffic based on the Deep Learning Journal
of Informatics and Information Systems (JIFoSI)
using one of the developments in the field of artificial
intelligence, namely Computer Vision using object
detection. on video surveillance cameras in public
places. The computer must be able to recognize areas
that are motorcycle objects in the image to make it
easier for motorcycle users to detect helmets. The
process of object recognition from an image is
known as YOLO (You Only Look Once). It is hoped
that this method can produce good accuracy and
speed because the YOLO method is state-of-the-art
in real-time object detection.

In this study, the classification of helmets was
carried out using the YO-LO (You Only Look Once)
method. YOLO uses a single Convolutional Neural
Network (CNN) network for object classification
and localization using bounding boxes. CNN is used
to identify images and provide convincing results.
The application of YOLO method has not been
widely applied in image identification. This study
implements the YOLO method as a helmet detector
based on images. The method used is expected to be
useful for detections that do not use helmets
(Pramestya, 2018).

Because the use of SNI helmets is one of the
requirements for safe riding for motorcyclists,
however, it is still often ignored, which in turn causes
the number of violations and accidents by
motorcycle riders to be quite high. The SNI helmet
detection system is expected to make drivers more
disciplined in completing their riding equipment,
especially SNI helmets, because this system forces
riders to wear helmets that comply with the LLAJ
Law or SNI helmets (Indonesian National Standards)
before riding.

1453

METHODS
1. Data Sharing
Split data is the process of dividing the collected

dataset into the "SNI" dataset, "NoSNI" dataset and
"NoHelm" dataset. The division of datasets based on
this class will make it easier for researchers in the
process of data augmentation, labeling and
annotation of image.

2. Data Augmentation
Data augmentation is the process of changing or

modifying an image so that the computer detects that
the image being changed is a different image. Data
augmentation is used to increase image data in the
dataset. Image mirroring can be used as a way to
reproduce image datasets. In addition to multiplying
images, data augmentation can also change and
exchange matrix values from an image. To simplify
the data augmentation process, ImageMagick
software is used to process images. ImageMagick is
a software used for image processing of images.

3. Image Name Change
Changing the name of the image dataset needs

to be done to make it easier to group and label data.
Each class consists of 1000 images. Thus, the total
number of images in the image dataset is 3000
images.

In the process of changing the image name, it
takes a long time to change the name of 3000 images
without spaces and parentheses. The way that can be
done is to select all the images in the "SNI", "NoSNI"
or "NoHelm" folders, then rename all the files
according to the class name. The result will be
{SNIJPG (1), SNIJPG (2), ..., SNIJPG (1000)},
{NoSNIJPG (1), NoSNIJPG (2), ..., NiSNIJPG
(1000)} or {NoHelmJPG (1) , NoHelmJPG (2), ...,
NoHelmJPG (1000)}. To simplify the process of
changing the name according to the desired format,
it is necessary to use batch file programs with the
names "renamer-a.bat" and "renamer-b.bat". The
program is a program made by the researcher
himself, to simplify the process in setting the naming
format as desired. The results obtained from the
batch file program will be {SNIJPG1, SNIJPG2, ...,
SNIJPG1000}, {NoSNIJPG1, NoSNIJPG2, ...,
NoSNIJPG 1000} or {NoHelmJPG1, NoHelmJPG2,
..., NoHelmJPG1000}.

4. Image Annotation
The image dataset that has been divided based

on the previous class, is then annotated on the images
according to the YOLO format using LabelImg.
LabelImg is a tool used for image labeling. LabelImg
is written using Python and executed using QT for
the graphical interface.

To carry out the image annotation process using
LabelImg, researchers need to install the necessary
tools. Next, all you have to do is run the LabelImg
application and carry out the bounding box process
or provide object boundaries to the image, then
proceed with labeling the image based on class. After
labeling, the annotation process is continued by
saving the images in the YOLO format. The
annotation results from the image will be saved in a
text file (.txt) format. After all the data is annotated,
combine the images in the "SNI", "NoSNI" and
"NoHelm" classes in one folder with the name "obj".

5. Data Acquisition
The data acquisition system can be defined as a

system that functions to retrieve, collect and prepare
data, to process it to produce the desired data. The
type and method chosen generally aim to simplify
each step carried out in the entire process. A data
acquisition system is generally written in such a way
that the system functions to retrieve, collect and store
data in a form that is ready for further processing.

The dataset has been annotated, then the process
of dividing the images into training data and test data
is carried out. The data to be trained and tested will
be included in a text file (.txt). To simplify the data
acquisition process quickly and automatically, a
program for data acquisition is used in the form of a
Python script, namely process.py.

6. Cloning and Building the Darknet
In this study, the flowchart in Figure 3.3

shows the workflow of the YOLOv4 algorithm. To
start the data training process, the process of cloning
and building Darknet is carried out and then stored in
the specified folder. If you use Google Colaboratory
as an application to run Python programming,
Google Drive can be used as a data storage location.

It starts with mounting and linking Google
Drive storage to Google Colaboratory. Make sure the
folder matches the source code format used. After the
mount and link process is successful, the next
process is to clone Darknet into Google Drive
storage. If Darknet cloning has been done before,

1454

then the cloning process will be considered a fatal
error.

If you want to clone again, then delete the
"darknet" folder on Google Drive storage. After the
cloning process is successful, the next process is to
change the folder directory to the darknet folder.
Next, the process of building the Darknet can be
done.

7. Loading Weight Pre-Trained YOLOv4
and Dataset

After the Darknet has been successfully built,
add the dataset and text file resulting from the data
acquisition to the "data" folder in Google Drive
storage. The next process is a process that loads pre-
trained weights. Pre-trained weights are required to

become Transfer Learning. Transfer Learning
consists of using the previously trained layers to
build different networks that may have something in
common with the first layer.

8. Hyperparameter Configuration
Hyperparameter configuration is a process used

to define parameters when performing image
training. YOLOv4 and YOLOv4-Tiny are
hyperparameter configurations to be improvised.
This hyperparameter configuration was taken based
on journal references and previous research, then the
researcher adjusted the number of iterations,
convolutional filters and the number of classes
according to the needs of the researcher. The
following are the configuration parameters used.

Table 1. YOLOv4 Hyperparameter Configuration

In table 1. the structure of CNN YOLOv4 is

Darknet YOLOv4. Where this layer consists of 110
convolutional layers. In addition, there are 23
shortcut layers, 21 route layers, 5 downsample

layers, 2 upsample layers, and 3 YOLO layers. Then
after the hyperparameters are configured, the next
process is parameter setting on YOLOv4-Tiny.

Parameter Name Mark

Number of Classes 3

Image dimensions 416x416

Max Iteration 6000

Number of convolution layers 110

Number of shortcut layers 23

Number of route layers 21

Parameter Name 5

The number of downsample layers 2

Number of upsample layers 3

Number of YOLO layers 1 x 1 and 3 x 3

Filter size 1 and 2

Stride on the convo layer 0.001

Learning rate 0.949

momentum 24

1455

Table 2. YOLOv4-Tiny Hyperparameter Configuration
Parameter Name Mark

Number of Classes 3

Image dimensions 416 x 416

Max Iteration 6000

Number of convolution layers 21

Number of route layers 11

Number of upsample layers 1

Number of YOLO layers 2

Filter size 1 x 1 and 3 x 3

Stride on the convo layer 1 and 2

Learning rate 0.00216

momentum 0.9

Convolutional filters 24

In Table 2, the structure of the CNN YOLOv4
architecture is Darknet YOLOv4. Where the layer
consists of 21 convolutional layers. In addition, there
are 11 route layers, 2 upsample layers, and 2 YOLO
layers. After all, hyperparameters have been
configured, the next process is setting up the model
on the YOLOv4 architecture.

9. YOLOv4 Model Setup
YOLOv4 Model Tuning is the process of

building the YOLOv4 architecture. The model used
is Darknet-53. YOLOv4 uses a CSP connection with
Darknet53 as the backbone for feature extraction.
Darknet-53 architecture:

Table 3. Darknet-53 Architecture
Type Filters Size Output

Convolutional 32 3 x 3 256 x 256

Convolutional 64 3 x 3 / 2 128 x 128

1x

Convolutional 3 1 x 1

Convolutional 32 3 x 3

Residual 128 x 128
Convolutional 128 3 x 3 / 2 64 x 64

2x

Convolutional 64 1 x 1

Convolutional 128 3 x 3
Residual 64 x 64

Convolutional 256 3 x 3 / 2 32 x 32

 Convolutional 128 1 x 1

1456

3x Convolutional 256 3 x 3
Residual 32 x 32

Convolutional 512 3 x 3 / 2 16 x 16

8x

Convolutional 256 1 x 1

Convolutional 512 3 x 3
Residual 16 x 16

Convolutional 1024 3 x 3 / 2 8 x 8

4x

Convolutional 512 1 x 1

Convolutional 1024 3 x 3
Residual 8 x 8

Average Pool Global

Connected Softmax 1000

The CSPDarknet53 model has higher
accuracy in object detection compared to ResNet-
based designs although ResNet has better
classification performance. But the classification
accuracy of CSPDarknet53 can be improved by Mish
and other techniques.

10. Datasets Training
After configuring the hyperparameters and

setting up the YOLOv4 model, the next step is the
image training process from the pre-processed
dataset. In this process, the dataset that will be used
as training data and test data is as follows:

Table 4. Training Data

Total Image Data Type

Training data and validation data 2700

Test data 300

Datasets (total) 3000

In the training, a process carried out, the
learning rate of the hyperparameter configuration
used is practically very small, namely 0.001. This
causes the duration of the training process to last very
long. However, this h affect a more accurate level of
accuracy. Therefore, if an error occurs during the
training process, the last data weights must be used
to continue the training process, without having to
start over again.

11. Saving Weights File and Loading
Trained Weights

This process is important in the data training
process. Where the data that has been trained will be
stored in the form of a weights file (.weights). The
process of saving the weights file starts in the first
1000 iterations, then it will be stored every 100
iterations as the last weights. Every multiple of 1000
iterations, will also be stored as a backup. If the max

batches used are 6000, then there are 6 weights files,
namely: iteration1000, iteration2000, iteration3000,
iteration4000, iteration5000, iteration6000,
last_weights, and best_weights.

Data that has been stored, of course, must be
able to be loaded so that the data can be processed
again. If an error occurs during training, these
weights can be used to retrain the data.

12. Loading and Resizing Data Sets
This process is a testing process that is carried

out when the training process is in progress. In this
process, the test data will be loaded and resized to
416 × 416 image dimensions. In this process, the
mAP (mean Average Precision) results, average loss,
and the time required in the training process will also
be rearranged. If the latest mAP results or accuracy
are higher than the previous results, then these results
will be stored as the best weights. Conversely, if the

1457

latest mAP results or accuracy are lower than the
previous results, then these results will be stored as
the last weights.

13. Data Evaluation
After data training has been successfully

carried out, the next process is the data evaluation
process. The following are the stages of data
evaluation:

12. Calculating Image Detection
In this process, the detected image and the total

object will be calculated. In this process, in addition
to the number of detected objects, the AP value, the
number of T (True), the number of F (False) and the
number of unique truth counts will also be
calculated. In the image detection calculation
process, the results of correct detection and false
detection obtained will determine the level of
accuracy of image detection.

13. Storing Output Results and Calculating
Performance Parameters

Based on the detection results and image
detection calculations during the research process,
the test results data will be stored in the backup. This
storage process is useful to be able to know the
progress of the increase in accuracy obtained.

Calculation of performance parameters needs
to be done to find out the process of increasing or
decreasing accuracy. This process can provide
temporary conclusions, whether the level of accuracy
obtained is accurate for use or not. Accuracy results
are displayed in graphical form. However, there is an
obstacle during the process of displaying accuracy
graphs, namely the program cannot display the
performance that has been passed before if there are
problems during data training. So, the function from
the last weights file cannot be displayed.

14. Research Scenario
The traffic violation detection research

scenario that was carried out was to compare the
accuracy results based on improvised parameter
configurations between YOLOv4 and YOLOv4-
Tiny. Steps to compare the accuracy of mAP values
on the same image. There are 2 research scenarios, in
the first scenario, the selfie image used is an image
using a helmet according to standards (SNI), an
image that does not use a helmet according to
standards (NoSNI) and does not use a helmet
(NoHelm) and a photo of the helmet of the researcher
and his colleagues. While the second scenario, the

image used for detection is a picture of a helmet of
someone who is riding a motorbike.

15. Test Scheme
In the testing scheme, the first step is to prepare

the objects to be investigated, namely SNI helmets,
NoSNI helmets and NoHelm and Google
Collaboratory to carry out detection. Then, gather
colleagues who will be photographed directly. The
test scheme is a study of selfies and driving images
of the researcher and his colleagues. Where the selfie
image data needed is 5 photos of helmet users
(researchers and colleagues) while using helmets
according to standards (SNI), 5 photos (researchers
and colleagues) who do not use non-standard helmets
(NoSNI), 5 photos of helmet users (researchers) and
colleagues) are not wearing a helmet (NoHelm).
Images were taken during the day (light) and night
(dark). Then when taking photos, pay attention to the
lighting, distance and angle of taking the photo. The
selfie and driving images are entered into Google
Drive first before running the detection.
Furthermore, after all the files are ready, the program
is ready to run and detect the results of the data that
has been retrieved.

RESULTS AND DISCUSSION
Results

After knowing the methodology used for
research on violation detection on motorists, the next
step is to apply the research method and display data
that supports the results of the research conducted.
The results of applying the research method are
divided into 4 parts, namely: 1. Results of Pre-
Processing Data, 2. Results of Data Training, 3.
Results of Data Evaluation, and 4. Results of Driver
Violation Detection.

a. Results of Pre-Processing Data
In the data pre-processing process, the image

dataset that has been obtained from the Kaggle open
source is processed according to the YOLO format.
In the data pre-processing process, there are 5
processes carried out, namely: 1. Data sharing, 2.
Augmentation, 3. Name change, 4. Data annotation,
5. Data acquisition.

b. Image Name Change
After carrying out the image augmentation

process, the next step is the process of changing the
name of the image. This process is needed to simplify
the research process and make image datasets more
well-organized. On Windows OS, you can change

1458

the name by selecting all the image data in the folder,
then changing the name of the data according to the
class. The result will be {SNIJPG (1), SNIJPG (2),
.... SNIJPG (1000)}, {NoSNIJPG (1), NoSNIJPG
(2),NoSNIJPG (1000)}, or {NoHelmJPG (1)),
NoHelmJPG (2), ... NoHelmJPG (1000)}. However,
because the required image data naming format is
without spaces and brackets, the researcher created a
"renamer" program with a batch file format, to
remove spaces and brackets. This program can only
run on Windows OS.

c. Image Annotation
In this process, the image dataset will be

annotated according to the YOLO format. The step
taken is to run the LabelImg program in the image
dataset folder that will be annotated. In this process,
enter one of the class folders (eg the "NoHelm"
folder) and run the program. After successfully
running, do a bounding box on the object (rider) you
want to detect. After that, label the image according
to the class.

After carrying out the bounding box and
labeling processes, the next step is to annotate the
data according to the YOLO format. The data will be
stored in the form of a text file (.txt) for each image
that has been bounded boxed and labeled.

d. Data Acquisition
After the dataset has been fully annotated, then

the process of dividing the images into training data
and test data is carried out. The data to be trained and
tested will be included in a text file (.txt). To simplify
the data acquisition process quickly and
automatically, a program for data acquisition is used
in the form of a Python script, namely process.py.

If the program is successfully executed, the
program will create text files, namely train.txt and
test.txt. the data is the process of selecting images to
be used as training data and images to be used as test
data. The training data contains 90% of the dataset's
images, while the test data contains 10% of the
dataset. So there are 2700 images for training data
and 300 images for test data. Next, is the process of
merging the data, which was initially divided into
"SNI", "NoSNI" and "NoHelm" folders, then the
image data is combined into one folder, namely the
"obj" folder.

e. Data Training Results
If the program is successfully executed, the

program will create text files, namely train.txt and
test.txt. the data is the process of selecting images to

be used as training data and images to be used as test
data. The training data contains 90% of the dataset's
images, while the test data contains 10% of the
dataset. So there are 2700 images for training data
and 300 images for test data. Next, is the process of
mAfter doing the virgin preparation in the data
preprocessing process, the next process is data
training. Before training the image dataset, the
YOLO architecture that will be used needs to be
configured first, so that the training process can run
properly and optimally.
merging the data, which was initially divided into
"SNI", "NoSNI" and "NoHelm" folders, then the
image data is combined into one folder, namely the
"obj" folder.

While the folder mount process is running,
permit access to Google Colaboratory to use Google
Drive storage.

f. Data Evaluation Results
The data evaluation process can take place during the
data training process, which is displayed for the first
time in the 1000th iteration. Furthermore, the
evaluation of the best accuracy level and the last
accuracy level will be displayed every 112 iterations.
However, the results are presented briefly and the
training process is still ongoing, so one can only see
the evaluation at a glance.
Discussion

Based on the research results that have been
obtained, the following is a discussion of the results
obtained from the research that has been conducted:

a. Discussion of Pre-Processing Data
Results

In the data pre-processing process, the
processing method used is quite complicated and
requires quite a long time. The data-sharing process
is fairly easy because it only divides the image
dataset obtained into 3 folders, namely "SNI",
"NoSNI" and "NoHelm".
In the data augmentation process, the time needed for
data augmentation using ImageMagick is faster than
manual augmentation. Because ImageMagick can
perform image augmentation using the command
prompt. The name change process is also faster and
can be arranged according to the desired naming,
namely without spaces and without parentheses. The
batch file program created by researchers can change
file names quickly.

1459

b. Discussion of Data Training Results
In the data training process, the YOLO

architecture development process for data training is
quite simple to build. However, the data training
process using the YOLOv4 configuration takes a
very long time. Because in the data training process,
the YOLOv4 configuration used has a small learning
rate. That is 0.001. In addition, the data training
process has a maximum iteration limit of up to 6000
batches. This causes the data training process to be
very long. It takes approximately 16 hours for data
training. Whereas in the data training process using
YOLOv4-Tiny, the time needed is very short.
YOLOv40Tiny training process, less than 2 hours.
Because in the data training process, the YOLOv4-
Tiny configuration used has a higher learning rate
than YOLOv4, which is 0.00216.

CONCLUSION

Analysis of Helmet Detection on Motorcyclists
To Detect Traffic Violations Using the You Only
Look Once (YOLOv4) Method which has been
successfully carried out using the YOLOv4
architecture. Based on the results of the analysis
above, it can be concluded several conclusions as
follows:

1. The research process was carried out very
well and the results were as expected. The
YOLOv4 and YOLOv4-Tiny parameter
configuration implementations used affect
the data training process for object
detection. Improving the YOLOv4
parameter configuration with a learning rate
of 0.001 for data training required a very
long time (approximately 16 hours), but the
training process and data evaluation went
quite well with a 75% mAP value. Whereas
in the YOLOv4-Tiny parameter
configuration improvisation with a learning
rate of 0.00261 for data training, the mapped
value obtained was still lower than
YOLOv4. The time required for the
YOLOv4-Tiny configuration for the data
training process is also shorter than the
YOLOv4 configuration

2. The best mAP value obtained in the
YOLOv4 parameter configuration is
99.69%. While the best mAP value obtained
in the YOLOv4-Tiny parameter
configuration is 62.5%. The mapped value

obtained on YOLOv4 is fully feasible for
real testing. Meanwhile, YOLOv4-Tiny is
not feasible for real testing.

REFERENCES
Bisong, E. (2019). 10. Apress, Berkeley, CA.

https://doi.org/https://doi.org/10.1007/978-1-4842-
4470-8_7

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y.
M. (2020). YOLOv4: Optimal Speed and Accuracy
of Object Detection. http://arxiv.org/abs/2004.10934

Cui, Zhe and Sun, Hong-Mei and Yin, Ruo-Nan
and Gao, Li and Sun, Hai-Bin and Jia, R.-S. (2021).
No Title. In Real-time detection method of driver
fatigue state based on deep learning of face video.

Fikriya, Z. A., Irawan, M. I., & Soetrisno., S.
(2017). Implementasi Extreme Learning Machine
untuk Pengenalan Objek Citra Digital. Jurnal Sains
dan Seni ITS, 6(1).
https://doi.org/10.12962/j23373520.v6i1.21754

Fukushima, K. (1980). Neocognitron: A self-
organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position.
Biological Cybernetics, 36(4), 193–202.
https://doi.org/10.1007/BF00344251

Giancini, D., Puspaningrum, E. Y., & Via, Y.
V. (2020). Identifikasi Penggunaan Masker
Menggunakan Algoritma CNN YOLOv3-Tiny.
Prosiding Seminar Nasional Informatika Bela
Negara, 1, 153–159.
https://doi.org/10.33005/santika.v1i0.41

Haviluddin. (2011). Memahami Penggunaan
UML (Unified Modelling Language). Memahami
Penggunaan UML (Unified Modelling Language),
6(1), 1–15.
https://informatikamulawarman.files.wordpress.com
/2011/10/01-jurnal-informatika-mulawarman-feb-
2011.pdf

Kadir, A. (2013). Buku pintar programmer
pemula php.

Khairunnas, K., Yuniarno, E. M., & Zaini, A.
(2021). Pembuatan Modul Deteksi Objek Manusia
Menggunakan Metode YOLO untuk Mobile Robot.

1460

Jurnal Teknik ITS, 10(1).
https://doi.org/10.12962/j23373539.v10i1.61622

Kusuma, T. A. A. H., Usman, K., & Saidah, S.
(2021). People Counting for Public Transportations
Using You Only Look Once Method. Jurnal Teknik
Informatika (Jutif), 2(1), 57–66.
https://doi.org/10.20884/1.jutif.2021.2.2.77

Munantri, N. Z., Sofyan, H., & Florestiyanto,
M. Y. (2020). Aplikasi Pengolahan Citra Digital
Untuk Identifikasi Umur Pohon. Telematika, 16(2),
97. https://doi.org/10.31315/telematika.v16i2.3183

Nugroho, A. (2010). Rekayasa Perangkat
Lunak Menggunakan UML & Jav.

Yogyakarta :Andi, 2009.
http://laser.umm.ac.id/catalog-detail-
copy/130001892/

Perkovic, L. (2012). Introduction to Computing
Using Python: An Application Development Focus.

Pramestya, R. H. (2018). Deteksi dan
Klasifikasi Kerusakan Jalan Aspal Menggunakan
Metode YOLO Berbasis Citra Digital. Institut
Teknolgi Sepuluh Nopember, 91.
http://repository.its.ac.id/59044/1/06111650010019-
Master_Thesis.pdf

Redmon, J., Divvala, S., Girshick, R., &
Farhadi, A. (2016). You Only Look Once: Unified,
Real-Time Object Detection. Computer Science >
Computer Vision and Pattern Recognition.
https://doi.org/https://doi.org/10.48550/arXiv.1506.
02640

Sinaga, A. S. R. (2017). Implementasi Teknik
Threshoding Pada Segmentasi Citra Digital. Jurnal
Mantik Penusa, 1(2), 48–51.

Suartika E. P, I Wayan, Wijaya Arya Yudhi, S.
R. (2016). Klasifikasi Citra Menggunakan
Convolutional Neural Network (Cnn) Pada Caltech
101. Jurnal Teknik ITS, 5(1), 76.
http://repository.its.ac.id/48842/

Wicaksono, B. A., Yuniar Purbasari, I., & Vita
Via, Y. (2021). Deteksi Objek Mobil dan Motor pada
Lalu Lintas Berbasis Deep Learning. Jurnal
Informatika dan Sistem Informasi, 2(2), 334–342.
https://doi.org/10.33005/jifosi.v2i2.284

Zulkhaidi, T. C. A.-S., Maria, E., & Yulianto,
Y. (2020). Pengenalan Pola Bentuk Wajah dengan
OpenCV. Jurnal Rekayasa Teknologi Informasi
(JURTI), 3(2), 181.
https://doi.org/10.30872/jurti.v3i2.4033

