Integrating Small Modular Reactors and Policy Frameworks for Sustainable Energy Security in Indonesia

Authors

  • Mufatdhal Energy Security, Indonesia Defense University
  • Imam Supriyadi Energy Security, Indonesia Defense University
  • Rudy Laksmono Energy Security, Indonesia Defense University

DOI:

https://doi.org/10.55927/mudima.v4i11.12092

Keywords:

Small Modular Reactors, Energy Security, Sustainable Energy

Abstract

This study evaluates the potential of Small Modular Reactors (SMRs) as a sustainable solution for Indonesia's energy diversification. Amid Indonesia’s rising energy demands and environmental commitments, SMRs-particularly Small Modular Molten Salt Reactors (SM-MSRs)-present an alternative to conventional power sources. SMRs offer advantages like modularity, operational efficiency, and safety, making them suitable for Indonesia’s geographically dispersed landscape. Using a qualitative descriptive approach, this research examines the technical, regulatory, and societal factors influencing SMR integration. Findings reveal that while SMRs show competitive Levelized Cost of Electricity (LCOE) compared to coal, challenges remain, including stringent regulatory requirements, high initial capital costs, and limited public acceptance due to nuclear safety concerns. Policy adjustments, community engagement, and collaboration with established SMR programs globally are suggested to address these issues. Additionally, SMRs’ scalability and compatibility with renewables support Indonesia’s goals for a resilient energy mix, potentially transforming remote energy access. This comprehensive approach underscores the viability of SMRs within Indonesia’s energy transition, contributing to a cleaner, more flexible energy infrastructure

References

About – Thorcon Power Indonesia. (n.d.). Retrieved October 29, 2024, from https://thorconpower.id/about/

Amatullah, A. (2024). Neutronic and Proliferation Resistance Analysis of Small Modular Pressurized Water Reactor With Various Fuel Types Using SRAC 2006. Journal of Physics Conference Series, 2734(1), 012057. https://doi.org/10.1088/1742-6596/2734/1/012057

Arifianto, B. S., Prihantoro, K., & Sasongko, N. A. (2022). Policy Formulation towards Net Zeroemission 2060 and Criteria for Development of Nuclear Power Plants in Indonesia using the Score card Deployment Method. 7(3).

Asuega, A., Limb, B. J., & Quinn, J. C. (2023). Techno-economic analysis of advanced small modular nuclear reactors.

Applied Energy, 334, 120669. https://doi.org/10.1016/j.apenergy.2023.120669

Athanasiou, K. (2024). Technology Data for the Indonesian Power Sector 2024.

Cho, I., Oh, S., Kim, S., Ardin, F., & Heo, E. (2021). Determinants of nuclear power expansion in Indonesia. Nuclear Engineering and Technology, 53(1), 314–321. https://doi.org/10.1016/j.net.2020.06.008

Cogswell, B. K., Siahaan, N., Ramana, M. V., & Tanter, R. (2017). Nuclear Power and Small Modular Reactors in Indonesia: Potential and Challenges.

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches 4th Edition. Sage Publication.

Dewi, D., Yuliyanto, A. T., Birmano, M. D., Puni, R. A., & Taryo, T. (2020). Readiness of National Industries Infrastructure to Support the RDE Programme in Indonesia. 3(2).

Ditjen ketenagalistrikan ESDM. (2024). Statistik Ketenagalistrikan Tahun 2023.

Hejazi, D., Alwafi, A. M., Alzahrani, S. M., Alqahtani, M. M., & Alshehri, S. M. (2024). The small modular molten salt reactor potential and opportunity in Saudi Arabia. Nuclear Engineering and Technology. https://doi.org/10.1016/j.net.2024.09.006

Huda, K. (2021). Study on Nuclear Power Program in Indonesia: Status Updates of Problems and Challenges. In Dr.

N. Makul (Ed.), New Approaches in Engineering Research Vol. 4 (pp. 102–113). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/naer/v4/2773F

IAEA. (2020). Advances in small modular reactor technology developments.

IAEA. (2021). Technology roadmap for small modular reactor deployment. IAEA.

IESR. (2019). Levelized Cost of Electricity in Indonesia, Institute for Essential Services Reform (IESR).

Imani, L., Setiawan, A. A., & Ridwan, M. K. (2021). Demand and Electricity Energy Mix in Indonesia 2030 with Small Modular Reactor Nuclear Power Plant and Renewable Energy Scenario. IOP Conference Series: Earth and Environmental Science, 927(1), 012025. https://doi.org/10.1088/1755-1315/927/1/012025

Johari, J. M. C., Pane, J. S., Dewayatna, W., Langenati, R., Suryaman, G. K., Adhi, A. S., Agus, C., Rahmadi, G., Herutomo, B., Sunarko, Priambodo, D., Sriyana, & Suparman, _. (2023). Evaluating the Performance of Indonesia’s Nuclear Energy Program Using INPRO Methodology. Kerntechnik, 88(3), 326–340. https://doi.org/10.1515/kern-2022-0099

Kwak, J., & Kim, H. R. (2018). Development of innovative reactor-integrated coolant system design concept for a small modular lead fast reactor. International Journal of Energy Research, 42(13), 4197–4205. https://doi.org/10.1002/er.4177

Lumbanraja, S. M., & Liun, E. (2018). Reviu Implementasi Thorcon Molten Salt Reactor di Indonesia. Jurnal Pengembangan Energi Nuklir, 20(1), 53. https://doi.org/10.17146/jpen.2018.20.1.4083

Lusiana, L., Sasongko, N., & Supriyadi, I. (2023). Scenario mitigation of threats and disruptions to development plan of Nuclear Power Plan (NPP) in Indonesia. IOP Conference Series: Earth and Environmental Science, 1267(1), 012008. https://doi.org/10.1088/1755-1315/1267/1/012008

Maharani, M. D. D., & Mellawati, J. (2019). Indeks Keberlanjutan Dimensi Peraturan Dalam Perencanaan Pembangunan PLTN Di Indonesia. Jurnal Pengembangan Energi Nuklir, 21(1), 19. https://doi.org/10.17146/jpen.2019.21.1.5375

Memmott, M. J., Manera, A., Boyack, J., Pacheco, S., Wang, M., & Petrovic, B. (2017). The primary reactor coolant system concept of the integral, inherently-safe light water reactor. Annals of Nuclear Energy, 100, 53–67. https://doi.org/10.1016/j.anucene.2016.08.016

Molten Salt Reactors (MSR). (n.d.). Retrieved October 25, 2024, from https://www.gen-4.org/generation-iv-criteria-and-technologies/molten-salt-reactors-msr

Morales Pedraza, J. (2017). Small Modular Reactors for Electricity Generation. Springer International Publishing. https://doi.org/10.1007/978-3-319-52216-6

Murakami, T., & Anbumozhi, V. (2022). Small Modular Reactor (SMR) Deployment: Advantages and Opportunities for ASEAN.

Muyasyaroh, A. P. (2024). Rethinking Energy Security in Indonesia from a Net Zero Perspective. Indonesian Journal of Energy, 7(1), 16–26. https://doi.org/10.33116/ije.v7i1.197

Namekar, S., & Nigam, Y. (2020). Review on Concepts of Nuclear Power Plant. 6(11).

Narindra, K. S. (2022). The Role of Strategic Diplomacy in the National Nuclear Power Plant Development Plan in Indonesia in Supporting Energy and National Defense. 05(01). https://doi.org/10.47191/ijsshr/v5-i1-46

Nøland, J. K. (2024). Overview of Small Modular and Advanced Nuclear Reactors and Their Role in the Energy Transition. https://doi.org/10.36227/techrxiv.171328325.50219295/v1

Rahmanta, M. A. (2024). Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant. Energies, 17(8), 1958. https://doi.org/10.3390/en17081958

Ruslan, R. (2021). Status Pemanfaatan Energi Baru Terbarukan dan Opsi Nuklir dalam Bauran Energi Nasional. Jurnal Pengembangan Energi Nuklir, 23(1), 39. https://doi.org/10.17146/jpen.2021.23.1.6161

Saleh, W. (2023). Advancing Small Modular Reactor Technology Assessment in the Czech Republic, Egypt, and Poland. Science and Technology of Nuclear Installations, 2023, 1–16. https://doi.org/10.1155/2023/7002980

Zarebski, P. (2023). Small Modular Reactors (SMRs) as a Solution for Renewable Energy Gaps: Spatial Analysis for Polish Strategy. Energies, 16(18), 6491. https://doi.org/10.3390/en16186491

Downloads

Published

2024-11-30

How to Cite

Mufatdhal, Imam Supriyadi, & Rudy Laksmono. (2024). Integrating Small Modular Reactors and Policy Frameworks for Sustainable Energy Security in Indonesia. Jurnal Multidisiplin Madani, 4(11), 1624–1636. https://doi.org/10.55927/mudima.v4i11.12092