Variation of Cement Types Usage for Compressive Strength of Concrete Quality F'c 35 Mpa
DOI:
https://doi.org/10.55927/mudima.v3i3.2640Keywords:
Concrete, Mixing Proportions, Cement Type, Compressive Strength CharacteristicsAbstract
Various research and experiments in the field of concrete are ocurred as an effort to improve the quality of concrete, material technology and implementation techniques obtained from the results of these studies and experiments are intended to answer the increasing demands on the use of concrete and overcome the obstacles that often occur in the implementation work at outdoor. One of them is to get high quality concrete. By using a variety of types of cement. The purpose of this study was to obtain a high quality f'c 35 MPa and to find out whether the cement type PPC (gresik) and the cement type PCC (tonasa and three wheels) where this type of cement has a high compressive strength achieves a quality of f'c 35 MPa. The test object used is cylindrical in shape and the planned quality is 35 MPa which will be tested at the age of 7 days, 14 days, 28 days and 56 days. This research was carried out in the BANJARMASIN STATE POLYTECHNIC laboratory. From the results of this study with the same mixture proportions, the characteristic compressive strength for the Gresik Cement Variation (PPC) = 28.665 MPa, the Cement Tonasa Variation (PCC) = 35.779 MPa, and the Characteristic Compressive Strength for Three Wheel Cement Variations (PCC) =31,961MPa. It can be concluded that the compressive strength of the concrete characteristics of the tonal cement variation is higher than that of the Gresik and Three Roda cement variations
References
Almuwbber, O., Haldenwang, R., Mbasha, W., & Masalova, I. (2018). The influence of variation in cement characteristics on workability and strength of SCC with fly ash and slag additions. Construction and Building Materials, 160, 258–267.
Amelia, R., & Rosyad, F. (2020). ANALISIS PERBANDINGAN JENIS SEMEN (MERK SEMEN) TERHADAP KUAT TEKAN BETON. Bina Darma Conference on Engineering Science (BDCES), 2(1), 381–390.
Attachaiyawuth, A., Puthipad, N., & Ouchi, M. (2022). Effects of Air-Entraining Agent, Defoaming Agent and Mixing Time on Characteristic of Entrained Bubbles in Air-Enhanced Self-Compacting Concrete Mixed at Concrete Plant. Engineering Journal, 26(2), 37–48.
Bulut, H. A., & Şahin, R. (2023). Activity concentration and annual effective dose assessments of radon in SCCs with different mineral additives. Construction and Building Materials, 364, 130004.
Dawood, E. T., & Mohammed, W. T. (2022). The use of non-destructive test for the evaluation of cement mortar containing different cementitious materials. AIP Conference Proceedings, 2386(1), 080014.
Husnah, H. (2016). Analisa perencanaan beton mutu tinggi (high strength concrete) dengan semen holcim. Racic: Rab Construction Research, 1(02), 135–144.
Kaboosi, K., & Emami, K. (2019). Interaction of treated industrial wastewater and zeolite on compressive strength of plain concrete in different cement contents and curing ages. Case Studies in Construction Materials, 11, e00308.
Kaboosi, K., Kaboosi, F., & Fadavi, M. (2020). Investigation of greywater and zeolite usage in different cement contents on concrete compressive strength and their interactions. Ain Shams Engineering Journal, 11(1), 201–211.
Komala, R., Hadi, S., & Prasetiawan, J. (2021). Pengaruh Jenis Semen Dan Lama Perawatan yang Berbeda Terhadap Kuat Tekan Beton Normal. JURNAL HANDASAH, 1(2), 24–32.
Liu, H., Elchalakani, M., Sadakkathulla, M. A., Yehia, S., Pham, T. M., & Yang, B. (2022). Effects of aggregate type, aggregate pretreatment method, supplementary cementitious materials, and macro fibers on fresh and hardened properties of high‐strength all‐lightweight self‐compacting concrete. Structural Concrete, 23(6), 4023–4037.
Luan, C., Zhou, M., Zhou, T., Wang, J., Yuan, L., Zhang, K., Ren, Z., Liu, Y., & Zhou, Z. (2022). Optimizing the Design Proportion of High-Performance Concrete via Using Response Surface Method. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1–15.
Rissardi, C. Z., Gil, A. M., Ehrenbring, H. Z., Li, Z., & Tutikian, B. F. (2022). Evaluating the robustness of self‐consolidating concrete: an approach to the mix design procedure. Structural Concrete, 23(3), 1933–1946.
Salain, I., & Alit, I. M. (2007). Perbandingan Kuat Tekan dan Permeabilitas Beton yang Menggunakan Semen Portland Pozzolan dengan yang Menggunakan Semen Portland Tipe I. Seminar Dan Pameran HAKI, 1–6.
Salain, I. M. A. K. (2012). Pengaruh jenis semen dan jenis agregat kasar terhadap kuat tekan beton. Teknologi Dan Kejuruan: Jurnal Teknologi, Kejuruan Dan Pengajarannya, 32(1).
Samia, H., & Mohamed Nacer, G. (2012). Application of the combined method for evaluating the compressive strength of concrete on site. Open Journal of Civil Engineering, 2012.
Sumajouw, M. D. J., Dapas, S. O., & Windah, R. S. (2014). Pengujian Kuat Tekan Beton Mutu Tinggi. Jurnal Ilmiah Media Engineering, 4(4).
Suryanto, S. (2014). PENGARUH SEMEN KOMPOSIT PADA BETON MUTU TINGGI DENGAN BERBAGAI ADITIF. Prokons: Jurnal Teknik Sipil, 8(1), 77–84.
Virnando, N. D. (2015). PENGARUH JENIS SEMEN DAN AGREGAT HALUS DARI BEBERAPA QUARRY TERHADAP KUAT TEKAN BETON NORMAL. Jurnal Teknik Sipil Institut Teknologi Padang, 2(1), 35–40.
Zulkarnain, F. (2021). Pengembangan dan Analisis Campuran Beton Mutu Tinggi untuk Struktur Dermaga di Indonesia. Seminar Nasional Teknologi Edukasi Sosial Dan Humaniora, 1(1), 54–58.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Humaidi, Khairil Yanuar, Aunur Rafik, Herliyani Farial Agoes
This work is licensed under a Creative Commons Attribution 4.0 International License.