Synergies and Challenges: Exploring the Intersection of Embedded Systems and Computer Architecture in the Era of Smart Technologies

Authors

  • Ashif Mohammad Deputy Station Engineer, Bangladesh Betar, Dhaka
  • Rimi Das Graduate Teaching Assistant, MS in Electrical and Computer Engineering, Idaho State University
  • Farhana Mahjabeen Assistant Radio Engineer, Bangladesh Betar, Dhaka

DOI:

https://doi.org/10.55927/ajmee.v2i2.7712

Keywords:

Embedded Systems, Computer Architecture, Smart Technologies

Abstract

The reconciliation of specific equipment gas pedals with productive programming calculations is significant for accomplishing ideal execution in asset-compelled implanted frameworks. This paper investigates different systems and philosophies utilized in co-plan, stressing the requirement for a harmonious connection among equipment and programming parts to open the maximum capacity of brilliant innovations. The difficulties faced at this crossing point are complex. Power utilization represents a considerable requirement, requiring creative arrangements in both implanted frameworks and PC engineering to guarantee energy-effective activity. Ongoing handling requests further add intricacy, requiring cautious thought of compromises between execution and power utilization. Moreover, the requirement for interoperability and normalization in the plan of implanted frameworks and PC models presents a diligent test, requiring cooperative endeavours across businesses to lay out durable systems.

Downloads

Download data is not yet available.

References

Abir, S.M.A.A.; Anwar, A.; Choi, J.; Kayes, A.S.M. IoT-Enabled Smart Energy Grid: Applications and Challenges. IEEE Access 2021, 9, 50961–50981. [Google Scholar] [CrossRef]

Ahmad, T.; Zhang, D. Using the internet of things in smart energy systems and networks. Sustain. Cities Soc. 2021, 68, 102783. [Google Scholar] [CrossRef]

Alavikia, Z.; Shabro, M. A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey. Digit. Commun. Netw. 2022, 8, 388–410. [Google Scholar] [CrossRef]

Borlase, S. Smart Grids: Advanced Technologies and Solutions; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]

Casaca, A.; Katkoori, S.; Ray, S.; Strous, L. Internet of Things. A Confluence of Many Disciplines. In Proceedings of the Second IFIP International Cross-Domain Conference, IFIPIoT 2019, Tampa, FL, USA, 31 October–1 November 2019. [Google Scholar] [CrossRef]

Cavalieri, S.; Cantali, G.; Susinna, A. Integration of IoT Technologies into the Smart Grid. Sensors 2022, 22, 2475. [Google Scholar] [CrossRef] [PubMed]

Clark, J. What is the Internet of Things? 2016. Available online: https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/ (accessed on 20 May 2022).

Collier, S.E. The Emerging Internet: Convergence of the Smart Grid with the Internet of Things. IEEE Rural. Electr. Power Conf. 2015, 23, 65–68. [Google Scholar] [CrossRef]

da Silva, T.B.; Chaib, R.P.S.; Arismar, C.S.; da Rosa Righi, R.; Alberti, A.M. Toward Future Internet of Things Experimentation and Evaluation. IEEE Internet Things J. 2022, 9, 8469–8484. [Google Scholar] [CrossRef]

Ghasempour, A. Internet of Things in Smart Grid: Architecture, Applications, Services, Key Technologies, and Challenges. Inventions 2019, 4, 22. [Google Scholar] [CrossRef][Green Version]

Gope, P.; Sikdar, B. A Privacy-Aware Reconfigurable Authenticated Key Exchange Scheme for Secure Communication in Smart Grids. IEEE Trans. Smart Grid 2021, 12, 5335–5348. [Google Scholar] [CrossRef]

Goudarzi, A.; Ghayoor, F.; Waseem, M.; Fahad, S.; Traore, I. A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook. Energies 2022, 15, 6984. [Google Scholar] [CrossRef]

Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the Energy Sector. Energies 2020, 13, 494. [Google Scholar] [CrossRef][Green Version]

Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]

Kabalci, E.; Kabalci, Y. Smart Grid and Their Communication Systems, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]

Lázaro, J.; Astarloa, A.; Rodríguez, M.; Bidarte, U.; Jiménez, J. A Survey on Vulnerabilities and Countermeasures in the Communications of the Smart Grid. Electronics 2021, 10, 1881. [Google Scholar] [CrossRef]

Lohiya, R.; Thakkar, A. Application Domains, Evaluation Data Sets, and Research Challenges of IoT: A Systematic Review. IEEE Internet Things J. 2021, 8, 8774–8798. [Google Scholar] [CrossRef]

Lyulyov, O.; Vakulenko, I.; Pimonenko, T.; Kwilinski, A.; Dzwigol, H.; Dzwigol-Barosz, M. Comprehensive Assessment of Smart Grids: Is There a Universal Approach? Energies 2021, 14, 3497. [Google Scholar] [CrossRef]

Manoj, P.; Kumar, B.Y.; Gowtham, M.; Vishwas, D.B.; Ajay, A.V. Internet of Things for innovative grid applications. Adv. Smart Grid Power Syst. 2021, 6, 159–190. [Google Scholar] [CrossRef]

Mao, W.; Zhao, Z.; Chang, Z.; Min, G.; Gao, W. Energy-Efficient Industrial Internet of Things: Overview and Open Issues. IEEE Trans. Ind. Inform. 2021, 17, 7225–7237. [Google Scholar] [CrossRef]

Martín-Lopo, M.M.; Boal, J.; Sánchez-Miralles, A. A literature review of IoT energy platforms aimed at end users. Comput. Netw. 2020, 171, 107101. [Google Scholar] [CrossRef]

Miao, Y.; Bu, Y. Research on the architecture and key technology of Internet of Things (IoT) applied on smartgrid. In Proceedings of the International Conference on Advances in Energy Engineering (ICAEE), Beijing, China, 19–20 June 2010; pp. 69–72. [Google Scholar] [CrossRef]

Mocrii, D.; Chen, Y.; Musilek, P. IoT-based smart homes: A review of system architecture, software, communications, privacy and security. Internet Things 2018, 1–2, 81–98. [Google Scholar] [CrossRef]

Parvin, K.; Hannan, M.A.; Mun, L.H.; Hossain Lipu, M.S.; Abdolrasol, M.G.M.; Ker, P.J.; Muttaqi, K.M.; Dong, Z.Y. The future energy internet for utility energy service and demand-side management in smart grid: Current practices, challenges and future directions. Sustain. Energy Technol. Assess. 2022, 53, 102648. [Google Scholar] [CrossRef]

Pramudhita, A.N.; Asmara, R.A.; Siradjuddin, I.; Rohadi, E. Internet of Things Integration in Smart Grid. In Proceedings of the 2018 International Conference on Applied Science and Technology, Manado, Indonesia, 26–27 October 2018; pp. 718–722. [Google Scholar] [CrossRef]

Rafique, W.; Zhao, X.; Yu, S.; Yaqoob, I.; Imran, M.; Dou, W. An Application Development Framework for Internet-of-Things Service Orchestration. IEEE Internet Things J. 2020, 7, 4543–4556. [Google Scholar] [CrossRef]

Reka, S.S.; Dragicevic, T. Future effectual role of energy delivery: A comprehensive review of Internet of Things and smart grid. Renew. Sustain. Energy Rev. 2018, 91, 90–108. [Google Scholar] [CrossRef]

Rose, K.; Eldridge, S.; Chapin, L. Available online: https://www.internetsociety.org/wp/content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf (accessed on 29 May 2022).

Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R. Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access 2019, 7, 62962–63003. [Google Scholar] [CrossRef]

Singh, D.; Tripathi, G.; Jara, A.J. A survey of Internet-of-Things: Future Vision, Architecture, Challenges and Services. In Proceedings of the 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Republic of Korea, 6–8 March 2014; pp. 287–292. [Google Scholar] [CrossRef]

Tao, J.; Umair, M.; Ali, M.; Zhou, J. The impact of Internet of Things supported by emerging 5G in power systems: A review. CSEE J. Power Energy Syst. 2020, 6, 344–352. [Google Scholar] [CrossRef]

Uslar, M.; Rohjans, S.; Neureiter, C.; Andrén, F.P.; Velasquez, J.; Steinbrink, C.; Efthymiou, V.; Migliavacca, G.; Horsmanheimo, S.; Brunner, H.; et al. Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective. Energies 2019, 12, 258. [Google Scholar] [CrossRef][Green Version]

Wang, D.; Zhong, D.; Souri, A. Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cogn. Syst. Res. 2021, 67, 33–49. [Google Scholar] [CrossRef]

World Economic Forum White Paper, Digital Transformation of Industries Electricity Industry. 2016. Available online: https://reports.weforum.org/digital-transformation/ (accessed on 17 March 2022).

Yang, Q. Internet of Things application in smart grid: A brief overview of challenges, opportunities, and future trends. In Smart Power Distribution Systems; Academic Press: Cambridge, MA, USA, 2019; pp. 267–283. [Google Scholar] [CrossRef]

Yuliarsa, I.N. Smart Grid—Tata Kelola Sistem Tenaga Listrik Masa Depan. 2017. Available online: http://ieeesb.ft.ugm.ac.id/smart-grid-tata-kelola-sistem-tenagalistrik-masa-depan/ (accessed on 15 July 2022).

Zeadally, S.; Shaikh, F.K.; Talpur, A.; Sheng, Q.Z. Design architectures for energy harvesting in the Internet of Things. Renew. Sustain. Energy Rev. 2020, 128, 109901. [Google Scholar] [CrossRef]

Downloads

Published

2024-01-23

How to Cite

Mohammad, A., Das, R., & Mahjabeen, F. (2024). Synergies and Challenges: Exploring the Intersection of Embedded Systems and Computer Architecture in the Era of Smart Technologies. Asian Journal of Mechatronics and Electrical Engineering, 2(2), 105–120. https://doi.org/10.55927/ajmee.v2i2.7712