Adsorption Dye in Batik Wastewater using Biomass Adsorbent : a State of the Art Review

Authors

  • Retno Dwi Nyamiati Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Pembangunan Nasional ‘’Veteran” Yogyakarta
  • Vera Listiawati Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Pembangunan Nasional ‘’Veteran” Yogyakarta
  • Galang Ariyuda Jurusan Teknik Kimia Fakultas Teknologi Industri Universitas Pembangunan Nasional ‘’Veteran” Yogyakarta

DOI:

https://doi.org/10.55927/fjas.v2i12.7059

Keywords:

Batik Dye Waste, Adsorption, Activated Carbon

Abstract

In this article, we study several research about optimizing the adsorption of harmful compounds contained in batik dye liquid waste using activated carbon. The employment of naphthalene as a chromogenic agent in the batik industry introduces a significant quandary by contributing to water pollution through effluent discharge. Noteworthy efforts have been made by certain industries, employing activated carbon to mitigate the presence of Pb and Cr attributable to naphthalene. The principal objective of this exposition is to consolidate insights into the sequestration of perilous dyes within batik industry effluents, leveraging various forms of natural activated carbon. The kinetics of the adsorption process will be quantified utilizing the appropriate kinetic order formula, while equilibrium data will be scrutinized through reaction isotherms employing diverse models.

Downloads

Download data is not yet available.

References

Chakraborty, T. K., Ghosh, S., Islam, M. S., Nice, M. S., Islam, K. R., Netema, B. N., Rahman, M. S., Habib, A., Zaman, S., Chandr Ghosh, G., Hossain, M. R., Tul-Coubra, K., Adhikary, K., Munna, A., Haque, M. M., Bosu, H., & Halder, M. (2023). Removal of hazardous textile dye from simulated wastewater by municipal organic solid waste charcoal using machine learning approaches: Kinetics, isotherm, and thermodynamics. Heliyon, 9(8). https://doi.org/10.1016/j.heliyon.2023.e18856

Chen, Q., Yao, Y., Li, X., Lu, J., Zhou, J., & Huang, Z. (2018). Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of Water Process Engineering, 26, 289–300. https://doi.org/https://doi.org/10.1016/j.jwpe.2018.11.003

Daud, N. M., Abdullah, S. R. S., Hasan, H. A., Ismail, N. ’Izzati, & Dhokhikah, Y. (2022). Integrated physical-biological treatment system for batik industry wastewater: A review on process selection. Science of The Total Environment, 819, 152931. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.152931

Handayani, T., Emriadi, Deswati, Ramadhani, P., & Zein, R. (2024). Modelling studies of methylene blue dye removal using activated corn husk waste: Isotherm, kinetic and thermodynamic evaluation. South African Journal of Chemical Engineering, 47, 15–27. https://doi.org/https://doi.org/10.1016/j.sajce.2023.10.003

Hung, D. Q., Dinh, L. X., Van Tung, N., Huong, L. T. M., Lien, N. T., Minh, P. T., & Le, T.-H. (2023). The adsorption kinetic and isotherm studies of metal ions (Co2+, Sr2+, Cs+) on Fe3O4 nanoparticle of radioactive importance. Results in Chemistry, 6, 101095. https://doi.org/https://doi.org/10.1016/j.rechem.2023.101095

Jegatheesan, V., Pramanik, B. K., Chen, J., Navaratna, D., Chang, C.-Y., & Shu, L. (2016). Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, 204, 202–212. https://doi.org/https://doi.org/10.1016/j.biortech.2016.01.006

Kusworo, T. D., Irvan, Kumoro, A. C., Nabilah, Y., Rasendriya, A., Utomo, D. P., & Hasbullah, H. (2022). Advanced method for clean water recovery from batik wastewater via sequential adsorption, ozonation and photocatalytic membrane PVDF-TiO2/rGO processes. Journal of Environmental Chemical Engineering, 10(6), 108708. https://doi.org/https://doi.org/10.1016/j.jece.2022.108708

Lam, S. S., Liew, R. K., Wong, Y. M., Yek, P. N. Y., Ma, N. L., Lee, C. L., & Chase, H. A. (2017). Microwave-assisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent. Journal of Cleaner Production, 162, 1376–1387. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.06.131

Njoku, V. O., Ayuk, A. A., Ejike, E. E., Oguzie, E., Duru, C., & Bello, O. (2011). Cocoa pod husk as a low cost biosorbent for the removal of Pb(II) and Cu(II) from aqueous solutions. Australian Journal of Basic and Applied Sciences, 5, 101–110.

Norfaizah M. Noor, S., Hazirah Hasnol, N., & Mohd Saufi, S. (2023). Isotherm and kinetic of adsorptive Purolite S108 mixed matrix membrane for boron adsorption. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.05.121

Putri, W., Rahmah, A., Mayasari, R., Nurmita, N., Deliza, D., Utami, W., Tanti, T., & Ma’ruf, R. (2022, March 7). Is Batik Bad for Water and The Environment? Reveal The Perception of Batik Craftsmen About Environmental Care. https://doi.org/10.4108/eai.20-10-2021.2316351

Rahmayanti, M., Yunita, E., & Putri, N. F. Y. (2020). Study of Adsorption-Desorption on Batik Industrial Dyes (Naphthol Blue Black) on Magnetite Modified Humic Acid (HA-Fe3O4). Jurnal Kimia Sains Dan Aplikasi, 23(7), 244–248. https://doi.org/10.14710/jksa.23.7.244-248

Ramutshatsha-Makhwedzha, D., Mavhungu, A., Moropeng, M. L., & Mbaya, R. (2022). Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater. Heliyon, 8(8). https://doi.org/10.1016/j.heliyon.2022.e09930

Tangahu, B. V., Ningsih, D. A., Kurniawan, S. B., & Imron, M. F. (2019). Study of BOD and COD removal in batik wastewater using Scirpus grossus and Iris pseudacorus with intermittent exposure system. Journal of Ecological Engineering, 20(5), 130–134. https://doi.org/10.12911/22998993/105357

Tiegam, R. F. T., Tchuifon Tchuifon, D. R., Santagata, R., Kouteu Nanssou, P. A., Anagho, S. G., Ionel, I., & Ulgiati, S. (2021). Production of activated carbon from cocoa pods: Investigating benefits and environmental impacts through analytical chemistry techniques and life cycle assessment. Journal of Cleaner Production, 288, 125464. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.125464

Vievard, J., Alem, A., Pantet, A., Ahfir, N. D., Arellano-Sánchez, M. G., Devouge-Boyer, C., & Mignot, M. (2023). Bio-Based Adsorption as Ecofriendly Method for Wastewater Decontamination: A Review. In Toxics (Vol. 11, Issue 5). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/toxics11050404

Wang, Z., Hu, W., Kang, Z., He, X., Cai, Z., & Deng, B. (2019). Arsenate adsorption on iron-impregnated ordered mesoporous carbon: Fast kinetics and mass transfer evaluation. Chemical Engineering Journal, 357, 463–472. https://doi.org/https://doi.org/10.1016/j.cej.2018.09.074

Widiyastuti, W., Fahrudin Rois, M., Suari, N. M. I. P., & Setyawan, H. (2020a). Activated carbon nanofibers derived from coconut shell charcoal for dye removal application. Advanced Powder Technology, 31(8), 3267–3273. https://doi.org/https://doi.org/10.1016/j.apt.2020.06.012

Widiyastuti, W., Fahrudin Rois, M., Suari, N. M. I. P., & Setyawan, H. (2020b). Activated carbon nanofibers derived from coconut shell charcoal for dye removal application. Advanced Powder Technology, 31(8), 3267–3273. https://doi.org/https://doi.org/10.1016/j.apt.2020.06.012

Wu, L., Zhang, X., & Si, Y. (2022). Polydopamine functionalized superhydrophilic coconut shells biomass carbon for selective cationic dye methylene blue adsorption. Materials Chemistry and Physics, 279, 125767. https://doi.org/https://doi.org/10.1016/j.matchemphys.2022.125767

Yanto, D. H. Y., Chempaka, R. M., Nurhayat, O. D., Argo, B. D., Watanabe, T., Wibisono, Y., & Hung, Y.-T. (2023). Optimization of dye-contaminated wastewater treatment by fungal Mycelial-light expanded clay aggregate composite. Environmental Research, 231, 116207. https://doi.org/https://doi.org/10.1016/j.envres.2023.116207

Zhang, B., Gao, B., Ma, W., Mo, Z., Song, Y., Xie, S., Jiang, F., & Hu, X. (2023). Adsorption of uranium(VI) by natural vermiculite: Isotherms, kinetic, thermodynamic and mechanism studies. Journal of Environmental Radioactivity, 270, 107305. https://doi.org/https://doi.org/10.1016/j.jenvrad.2023.107305

Downloads

Published

2023-12-22

How to Cite

Retno Dwi Nyamiati, Vera Listiawati, & Galang Ariyuda. (2023). Adsorption Dye in Batik Wastewater using Biomass Adsorbent : a State of the Art Review. Formosa Journal of Applied Sciences, 2(12), 3521–3530. https://doi.org/10.55927/fjas.v2i12.7059