A State of the Art Review For Removing Heavy Metals Resulting from Industrial Waste

Authors

  • Retno Dwi Nyamiati Jurusan Teknik Kimia, Fakultas Teknik Industri, Universitas Pembangunan Nasional ”Veteran” Yogyakarta
  • Wiji Asih Setyaningtyas Jurusan Teknik Kimia, Fakultas Teknik Industri, Universitas Pembangunan Nasional ”Veteran” Yogyakarta
  • Dimas Arstyanto Jurusan Teknik Kimia, Fakultas Teknik Industri, Universitas Pembangunan Nasional ”Veteran” Yogyakarta

DOI:

https://doi.org/10.55927/fjas.v3i6.9604

Keywords:

Activated Carbon, Adsorption, Heavy Metals, Removal Heavy Metals

Abstract

The contamination of heavy metals has become a serious concern for both the government and researchers due to industrial waste. Heavy metals possess toxic properties that can harm the human body if exposed over an extended period. It cannot be denied that toxic heavy metals come in various types, such as Ag (argentum), Cd (cadmium), Cr (chromium), Cu (cuprum), Ni (nickel), and others. In its development, various methods have been implemented to eliminate heavy metal waste, encompassing both conventional and modern approaches. Researchers are actively seeking the most efficient and effective method to address the issue of heavy metal removal. This review focuses on different methods for handling heavy metal waste, measuring the percentage of heavy metal loss to determine which method is the most effective and efficient in heavy metal removal.

Downloads

Download data is not yet available.

References

Alamsyah, M., Kalla, R., & La Ifa, L. I. (2017). Pemurnian Minyak Jelantah Dengan Proses Adsorbsi. Journal Of Chemical Process Engineering, 2(2), 22. https://doi.org/10.33536/jcpe.v2i2.162

Ali, I., Khan, T. A., & Asim, M. (2012). Removal of arsenate from groundwater by electrocoagulation method. Environmental Science and Pollution Research, 19(5), 1668–1676. https://doi.org/10.1007/s11356-011-0681-3

Arora, R. (2019). Adsorption of heavy metals-a review. Materials Today: Proceedings, 18, 4745–4750. https://doi.org/10.1016/j.matpr.2019.07.462

Bobade, V., Eshtiaghi, N., & Eshtiagi, N. (2015). Heavy Metals Removal from Wastewater by Adsorption Process: A Review Aerated sludge rheology View project Digester hydrodynamics View project Heavy Metals Removal from Wastewater by Adsorption Process: A Review. October. https://www.researchgate.net/publication/283505935

Bouchelta, C., Medjram, M. S., Zoubida, M., Chekkat, F. A., Ramdane, N., & Bellat, J. P. (2012). Effects of pyrolysis conditions on the porous structure development of date pits activated carbon. Journal of Analytical and Applied Pyrolysis, 94, 215–222. https://doi.org/10.1016/j.jaap.2011.12.014

Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Ho, S. H., & Show, P. L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589

Chakraborty, R., Asthana, A., Singh, A. K., Jain, B., & Susan, A. B. H. (2022). Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, 102(2), 342–379. https://doi.org/10.1080/03067319.2020.1722811

Chen, D., & Ray, A. K. (2001). Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56(4), 1561–1570. https://doi.org/10.1016/S0009-2509(00)00383-3

Dotto, G. L., & Pinto, L. A. A. (2011). Adsorption of food dyes acid blue 9 and food yellow 3 onto chitosan: Stirring rate effect in kinetics and mechanism. Journal of Hazardous Materials, 187(1–3), 164–170. https://doi.org/10.1016/j.jhazmat.2011.01.016

Harper, T. R., & Kingham, N. W. (1992). Removal of arsenic from wastewater using chemical precipitation methods. Water Environment Research, 64(3), 200–203. https://doi.org/10.2175/wer.64.3.2

Jakobsen, M. R., Fritt-Rasmussen, J., Nielsen, S., & Ottosen, L. M. (2004). Electrodialytic removal of cadmium from wastewater sludge. Journal of Hazardous Materials, 106(2–3), 127–132. https://doi.org/10.1016/j.jhazmat.2003.10.005

Kamran, S., Shafaqat, A., Samra, H., Sana, A., Samar, F., Muhammad, B. S., Saima, A. B., & Hafiz, M. T. (2013). Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener Journal of Environmental Management and Public Safety, 2(4), 172–179. https://doi.org/10.15580/gjemps.2013.4.060413652

Mcdonald, C. W., & Bajwa, R. S. (1977). Removal of Toxic Metal Ions from Metal-Finishing Wastewater by Solvent Extraction. Separation Science, 12(4), 435–445. https://doi.org/10.1080/00372367708058088

Ngabura, M., Hussain, S. A., Ghani, W. A. W. A., Jami, M. S., & Tan, Y. P. (2018). Utilization of renewable durian peels for biosorption of zinc from wastewater. Journal of Environmental Chemical Engineering, 6(2), 2528–2539. https://doi.org/10.1016/j.jece.2018.03.052

Oktaviani, D. J., Widiyastuti, S., Maharani, D. A., Amalia, A. N., Ishak, A. M., & Zuhrotun, A. (2020). Penggunaan Heat Shock Protein 90 (Hsp90) Dengan Radionuklida 64Cu, 18F, Dan 89Zr Untuk Kanker Ovarium : Review Jurnal. Farmaka, 18(1), 1–15.

Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K. J., & Loizidou, M. (2004). Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Separation and Purification Technology, 39(3), 181–188. https://doi.org/10.1016/j.seppur.2003.10.010

Downloads

Published

2024-07-01

How to Cite

Nyamiati, R. D., Setyaningtyas, W. A., & Arstyanto, D. (2024). A State of the Art Review For Removing Heavy Metals Resulting from Industrial Waste. Formosa Journal of Applied Sciences, 3(6), 2651–2664. https://doi.org/10.55927/fjas.v3i6.9604

Issue

Section

Articles