Predicting Baker's Yeast Dosage and Fermentation Time on Bioethanol Production Made from Papaya Skin Waste
DOI:
https://doi.org/10.55927/fjsr.v2i8.4831Keywords:
Bioethanol, Fermentation Time, Papaya Skin, Saccharomyces Cerevisiae, Yeast DosageAbstract
This literature study research aims to find the appropriate yeast dose and fermentation time to process papaya skin waste into bioethanol by utilizing Saccharomyces cerevisiae yeast. Papaya skin waste is one of the biomass that is quite abundant and contains high sugar content so it can be used as raw material for making bioethanol. The data collection method was carried out through online searches of scientific journals related to the potential of papaya waste, fermentation, bioethanol production, bioethanol manufacturing techniques, yeast types and yeast doses, and bioethanol content. As a result, get fermentation for making bioethanol efficiently using a yeast dose of 0.3% and the fastest fermentation time of 3 days
Downloads
References
Abbaszadeh, S., Wan Alwi, S. R., Webb, C., Ghasemi, N., & Muhamad, I. I. (2016). Treatment of lead-contaminated water using activated carbon adsorbent from locally available papaya peel biowaste. Journal of Cleaner Production, 118, 210–222. https://doi.org/10.1016/j.jclepro.2016.01.054
Abdulla, R., Derman, E., Ravintaran, P. T., & Jambo, S. A. (2018). Fuel ethanol production from papaya waste using immobilized Saccharomyces cerevisiae. ASM Science Journal, 11(Special Issue 2), 112–123.
Ahmad, A., Muria, S. R., & Tuljannah, M. (2019). Production of Second Generation Bioethanol from Palm Fruit Fiber Biomass using Saccharomyces cerevisiae. Journal of Physics: Conference Series, 1295(1). https://doi.org/10.1088/1742-6596/1295/1/012030
Akhtar, N., Karnwal, A., Upadhyay, A. K., Paul, S., & Mannan, M. A. U. (2018). Saccharomyces cerevisiae bio-ethanol production, a sustainable energy alternative. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 20(December), S200–S204.
Akponah, E., & Akpomie, O. O. (2011). Analysis of the suitability of yam , potato and cassava root peels for bioethanol production using Saccharomyces cerevisae. International Research Journal of Microbiology, 2(November), 393–398. http://interesjournal.org/IRJM/Pdf/2011/November/Akponah and Akpomie.pdf
Amalia, A. V., Widiatningrum, T., & Herdiyanti, R. D. (2021). Optimization of bioethanol production from tapioca flour waste through the addition of a starter and fermentation duration. Journal of Physics: Conference Series, 1918(5), 1–5. https://doi.org/10.1088/1742-6596/1918/5/052015
Arif, A. R., Natsir, H., Rohani, H., & Karim, A. (2018). Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method. Journal of Physics: Conference Series, 979(1). https://doi.org/10.1088/1742-6596/979/1/012015
Aunjt, A. A., Soe Than, S., & Hla, P. K. (2016). OBSERVATION ON THE YIELD OF BIOETHANOL FROM REJECfED PAPAYA AND PINEAPPLE. Jour. Myan. Acad. Arts ’& Sc, XIV(1), 350–357. www.gea.v.iegand
Awais, H., Afzal, A., Zahid, A., Akbar, A., Jamal, Z., Habib, H., & Javaid, S. (2021). In Vitro study of Thrombolytic activity from the different parts of Carica papaya plant on COVID-19 patients. Pakistan BioMedical Journal, 4(2), 15. https://doi.org/10.54393/pbmj.v4i2.107
Azad, M. A. K., & Yesmin, N. (2019). Bioethanol production from agriculturalproducts and fruits of Bangladesh. International Journal of GEOMATE, 17(61), 222–227. https://doi.org/10.21660/2019.61.4795
Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10(February), 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003
Bahlawan, Z. A. S., Megawati, Damayanti, A., Putri, R. D. A., Permadhini, A. N., Sulwa, K., Felicitia, F. P., & Septiamurti, A. (2022). Immobilization of Saccharomyces cerevisiae in Jackfruit (Artocarpus heterophyllus) Seed Fiber for Bioethanol Production. ASEAN Journal of Chemical Engineering, 22(1), 156–167. https://doi.org/10.22146/ajche.69781
Bhadana, B., & Chauhan, M. (2016a). Bioethanol Production Using Saccharomyces cerevisiae with Different Perspectives: Substrates, Growth Variables, Inhibitor Reduction and Immobilization. Fermentation Technology, 5(2), 1000131. https://doi.org/10.4172/2167-7972.1000131
Bhadana, B., & Chauhan, M. (2016b). Bioethanol Production Using Saccharomyces cerevisiae with Different Perspectives: Substrates, Growth Variables, Inhibitor Reduction and Immobilization. Fermentation Technology, 5(2), 2–5. https://doi.org/10.4172/2167-7972.1000131
Candra, K. P., Kasma, Ismail, Marwati, Murdianto, W., & Yuliani. (2019). Optimization method for bioethanol production from giant Cassava (Manihot esculenta var. Gajah) originated from East Kalimantan. Indonesian Journal of Chemistry, 19(1), 176–182. https://doi.org/10.22146/ijc.31141
Deshbandhu, S. R. (2019). Study of Fruit Wastes used in the Production of Biofuel. JETIR, 6(6), 949–956.
Dhanaseeli, P. B., & Balasubramanian, V. (2014). Studies of ethanol production from different fruit wastes using saccharomyces cerevisiae. Biosciences Biotechnology Research Asia, 11(SepcialEdition 1), 19–23. https://doi.org/10.13005/bbra/1386
Edeh, I. (2021). Bioethanol Production: An Overview. In F. Inambao (Ed.), Bioethanol Technologies (Issue May). Pietermaritzburg, Sudáfrica: Universidad de KwaZulu-Nata. https://doi.org/10.5772/intechopen.94895
Faustine, A., & Djamaan, A. (2021). Bioethanol Production from Various Agricultural Waste Substrate using Saccharomyces cerevisiae. IOSR Journal Of Pharmacy And Biological Sciences (IOSR-JPBS) e-ISSN, 16(1), 7–13. https://doi.org/10.9790/3008-1601030713
Favaretto, D. P. C., Rempel, A., Lanzini, J. R., Silva, A. C. M., Lazzari, T., Barbizan, L. D., Brião, V. B., Colla, L. M., & Treichel, H. (2023). Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World Journal of Microbiology & Biotechnology, 39(6), 144. https://doi.org/10.1007/s11274-023-03588-2
Febriana, I., Zurohiana, Zikri, A., & Hatina, S. (2018). Pengaruh Konsentrasi Ragi Roti (Saccharomyces Cereviseae) Dan Lama Fermentasi Dalam Pembuatan Bioetanol Menggunakan Kulit Pisang. Distilasi, 3(1), 1–7.
Fransisca, M. . (2016). Pengaruh Perlaukan Panas dan Lama Fermentasi terhadap Hasil Bioetanol dari Limbah Pepaya (Carica papaya L). UNIVERSITAS GADJAH MADA.
Gunam, I. B. W., Kaban, T. E. B., & Suwariani, N. P. (2022). Effect of yeast concentration and fermentation time on the characteristics of tuak from coconut sap. Canrea Journal: Food Technology, Nutritions, and Culinary Journal, 5(2), 139–150. https://doi.org/10.20956/canrea.v5i2.599
Hawaz, E., Tafesse, M., Tesfaye, A., Beyene, D., Kiros, S., Kebede, G., Boekhout, T., Theelen, B., Groenewald, M., Degefe, A., Degu, S., Admas, A., & Muleta, D. (2022). Isolation and characterization of bioethanol producing wild yeasts from bio-wastes and co-products of sugar factories. Annals of Microbiology, 72(1). https://doi.org/10.1186/s13213-022-01695-3
Heri Rizaldi, L., Utari Rinjani, F., & Amrullah, S. (2022). The effect of fermentation time on bioethanol levels from sugar cane (Saccharum officinarum). Jurnal Agrotek UMMAT, 9(3), 182–189.
Hermansyah, Panagan, A. T., Fatma, & Susilawati. (2021). Indigenous Yeast for Bioethanol Production. Journal of Physics: Conference Series, 1940(1), 012044. https://doi.org/10.1088/1742-6596/1940/1/012044
Hernawan, H., Maryana, R., Pratiwi, D., Wahono, S. K., Darsih, C., Hayati, S. N., Poeloengasih, C. D., Nisa, K., Indrianingsih, A. W., Prasetyo, D. J., Jatmiko, T. H., Kismurtono, M., & Rosyida, V. T. (2017). Bioethanol production from sugarcane bagasse by simultaneous sacarification and fermentation using Saccharomyces cerevisiae. AIP Conference Proceedings, 1823(1), 020026–2. https://doi.org/10.1063/1.4978099
Jahid, M., Gupta, A., & Sharma, D. K. (2018). Production of Bioethanol from Fruit Wastes (Banana, Papaya, Pineapple and Mango Peels) Under Milder Conditions. Journal of Bioprocessing & Biotechniques, 08(03), 1000327. https://doi.org/10.4172/2155-9821.1000327
Jiménez, J., Newcomer, E. M., & Gutiérrez-Soto, M. . (2014). Biology of the Papaya Plant. In R. Ming & P. H. Moore (Eds.), Genetics and Genomics of Papaya (Issue December 2019, pp. 1–438). Springer Science. https://doi.org/10.1007/978-1-4614-8087-7
Joymak, W., Ngamukote, S., Chantarasinlapin, P., & Adisakwattana, S. (2021). Unripe papaya by-product: From food wastes to functional ingredients in pancakes. Foods, 10(3). https://doi.org/10.3390/foods10030615
Kang, A., & Lee, T. S. (2015). Converting sugars to biofuels: Ethanol and beyond. Bioengineering, 2(4), 184–203. https://doi.org/10.3390/bioengineering2040184
Kerina, Y. D., Hardoto, & Atmono. (2022). Fermentasi Bioethanol Dari Bahan Baku Biji Buah-Buahan Menggunakan Ragi Roti dan Ragi Tape. Jurnal Lingkungan Dan Sumberdaya Alam, 5(1), 24–34. https://doi.org/https://doi.org/10.47080/jls.v5i1.1810
Khandaker, M. M., Qiamuddin, K. B., Majrashi, A., Dalorima, T., Sajili, M. H., & Sharif Hossain, A. B. M. (2018). Bio-ethanol production from fruit and vegetable waste by using saccharomyces cerevisiae. In Bioscience Research (Vol. 15, Issue 3, pp. 1703–1711).
Khodijah, S., & Ahmad, A. (2015). Analisis Pengaruh Variasi Presentase Ragi (Saccharomyces cerevisiae ) DAN WAKTU PADA PROSES FERMENTASI DALAM PEMANFAATAN DUCKWEED. Jurnal Neutrino, 7(2), 71–76.
Kularathne, I. W., Rathneweera, A. C., Kalpage, C. S., Rajapakshe, S., & Gunathilaka, C. A. (2020). Optimization and kinetic parameter estimation of bioethanol production from freely available Sri Lankan fruits in batch fermentation. Ceylon Journal of Science, 49(3), 283. https://doi.org/10.4038/cjs.v49i3.7779
Kurniawan, T. ., Bintari, S. H., & Susanti, R. (2014). Interaction effects Tape and Bread Yeast on the Level of Bioethanol Cassava (Manihot utilissima, Pohl) Mukibat Varieties. Biosaintifika, 6(2), 152–160. https://doi.org/10.15294/biosaintifika.v6i2.3783
Lin, Y., Zhang, W., Li, C., Sakakibara, K., Tanaka, S., & Kong, H. (2014). Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass and Bioenergy, 47, 395–401. https://doi.org/10.1016/j.biombioe.2012.09.019
Martial-Didier, A. K., Hubert, K. K., Jean Parfait, K. E., & Kablan, T. (2017). Phytochemical Properties and Proximate Composition of Papaya (Carica papaya L. var solo 8) Peels. Turkish Journal of Agriculture - Food Science and Technology, 5(6), 676–680. https://doi.org/10.24925/turjaf.v5i6.676-680.1154
Maryana, T., Silsia, D., & Budiyanto. (2020). EFFECT OF YEAST CONCENTRATION AND TYPE OF STARTER ON BIOETHANOL PRODUCTION FROM SUGARCANE BAGASSE. Jurnal Agroindustri, 10(1), 47–56. https://doi.org/10.31186/j.agroind.10.1.47-56
Mitiku, A. A., & Hatsa, T. M. (2020). Bioethanol production from decaying fruits peel using Saccharomyces cerevisiae. International Journal of Current Research and Academic Review, 8(5), 50–59.
Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10(February), 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003
Moses, M. O., & Olanrewaju, M. J. (2018). Proximate and selected Mineral Composition of Ripe Pawpaw (Carica papaya) Seeds and Skin. Journal of Scientific and Innovative Research, 7(3), 75–77. https://doi.org/10.31254/jsir.2018.7304
Mukti, N. ., & Aryani, W. (2016). PENGARUH WAKTU FERMENTASI DAN JUMLAH RAGI TERHADAP PERSENTASE HASIL DALAM PEMBUATAN BIOETANOL DARI BUAH TALOK (KERSEN) MENGGUNAKAN RAGI TAPE DAN RAGI ROTI (Saccharomyces cerevisiae). Jurnal Inovasi Proses, 1(1), 18–27.
Muzaffar, K., Ahmad Sofi, S., & Mir, S. A. (2022). Fruit Processing Wastes and By-Products. In K. Muzaffar, S. . Sofi, & S. . Mir (Eds.), Handbook of Fruit Wastes and By-Products. Taylor and Francis. https://doi.org/10.1201/9781003164463
Nafiu, A. B., Alli-Oluwafuyi, A. M., Haleemat, A., Olalekan, I. S., & Rahman, M. T. (2018). Papaya (Carica papaya L., Pawpaw). In Nonvitamin and Nonmineral Nutritional Supplements (Vol. 1616). Elsevier Inc. https://doi.org/10.1016/B978-0-12-812491-8.00048-5
Naito, Y., Okai, M., Ishida, M., Takashio, M., & Urano, N. (2019). Bioethanol Production from Molasses by Yeasts with Stress-Tolerance Isolated from Aquatic Environments in Japan. Advances in Microbiology, 09(12), 1000–1011. https://doi.org/10.4236/aim.2019.912065
Nakano, D., & Muniz, J. (2018). Writing the literature review for empirical papers. Production, 28. https://doi.org/10.1590/0103-6513.20170086
Narindri, B., Cahyanto, M. ., & Millati, R. (2016). Produksi Bioetanol Daun Sorghum (Sorghum bicolor L.Moench). Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 1(1), 44–50. https://doi.org/10.24002/biota.v1i1.712
Nikolić, S., Pejin, J., & Mojović, L. (2016). CHALLENGES IN BIOETHANOL PRODUCTION: UTILIZATION OF COTTON FABRICS AS A FEEDSTOCK Article. Chemical Industry and Chemical Engineering Quarterly, 22(4), 375–390. https://doi.org/10.2298/CICEQ151030001N
Ogbonda, K. H., & Kiin-Kabari, D. B. (2013). Effect of temperature and pH on ethanol production by a Blastomyces species isolated from the intestine of oil palm weevil (Rhynchophorus palmarum, coleoptera). African Journal of Biotechnology, 12(6), 588–591. https://doi.org/10.5897/AJB10.1477
Parameswari, K., Hemalatha.M, Priyanka.K, & B, K. (2015). Isolation of yeast and ethanol production from papaya (Carica papaya) and grape (Vitis vinifera) fruits. International Journal of Scientific and Engineering Research, 6(2), 100–104. http://www.ijser.org/researchpaper%5CIsolation-of-yeast-and-ethanol-production-from-papaya.pdf
Pathak, P. D., Mandavgane, S. A., & Kulkarni, B. D. (2019). Waste to Wealth: A Case Study of Papaya Peel. Waste and Biomass Valorization, 10(6), 1755–1766. https://doi.org/10.1007/s12649-017-0181-x
Phwan, C. K., Chew, K. W., Sebayang, A. H., Ong, H. C., Ling, T. C., Malek, M. A., Ho, Y. C., & Show, P. L. (2019). Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnology for Biofuels, 12(1), 1–8. https://doi.org/10.1186/s13068-019-1533-5
Promon, S. K. (2015). Studies on Isolation of Yeasts from Natural Sources for Bioethanol production from Vegetable Peels and the Role of Cellulose Degrading Bacteria (Bacillus subtilis) on Ethanol Production (Issue August). BRAC University.
Rahman, A. (2013). Health Benefits, Chemistry and Mechanism of Carica Papaya a Crowning Glory. Advances in Natural Science, 6(3), 26–37. https://doi.org/10.3968/j.ans.1715787020130603.1642
Rahman, R. (2022). Effect of Fermentation Time and Weight of Bread Yeast on Bioethanol Content from Glucose Hydrolysis of Cellulose Empty Bunches Palm Oil (Elaesis guineensis Jacq.) with HCl 30%. Journal of Chemical Natural Resources, 04(01), 65–71.
Rahmanto, D. E., Arizal, D., & Nurhayati, N. (2022). Utilization of Banana Peel for Bioethanol Production Using Baker’s Yeast Starter. Proceedings of the 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021), 16, 82–88. https://doi.org/10.2991/absr.k.220101.012
Ramdhani, A., Ramdhani, M. A., & Amin, A. S. (2014). Writing a Literature Review Research Paper: A step-by-step approach. The Journal of Applied Behavioral Science, 3(1), 47–56. https://doi.org/10.1177/0021886391273004
Rojas-Flores, S., Pérez-Delgado, O., Nazario-Naveda, R., Rojales-Alfaro, H., Benites, S. M., De La Cruz-Noriega, M., & Otiniano, N. M. (2021). Potential use of papaya waste as a fuel for bioelectricity generation. Processes, 9(10), 1–11. https://doi.org/10.3390/pr9101799
Saba, S., & Pattan, N. (2016). The Potential Health Benefits of Papaya Seeds. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10(1), 1–23.
Saran, P. L., & Choudhary, R. (2013). Drug bioavailability and traditional medicaments of commercially available papaya: a review. African Journal of Agricultural Research, 8(25), 3216–3223. https://doi.org/10.5897/AJAR2013.7295
Setyawati, I., Ambarsari, L., Nur’aeni, S., Suryani, S., Puspita, P. J., Kurniatin, P. A., & Nurcholis, W. (2016). Bioethanol Production by Using Detoxified Sugarcane Bagasse Hydrolysate and Adapted Culture of Candida tropicalis. Current Biochemistry, 2(1), 1–12. https://doi.org/10.29244/cb.2.1.1-12
Sharma, A., Bachheti, A., Sharma, P., Bachheti, R. K., & Husen, A. (2020). Phytochemistry, pharmacological activities, nanoparticle fabrication, commercial products and waste utilization of Carica papaya L.: A comprehensive review. Current Research in Biotechnology, 2(September), 145–160. https://doi.org/10.1016/j.crbiot.2020.11.001
Sharma, H. K., & Kaur, M. (2017). Utilization of Waste from Tropical Fruits. In Anil Kumar Anal (Ed.), Food Processing By-Products and their Utilization (First Edit). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118432921.ch3
Simarmata, W., Yurnaliza, Y., & Nurwahyuni, I. (2022). Quality of Effective Microorganisms-based Liquid Fertilizer from Fermented Papaya Fruits (Carica papaya L.). Jurnal Pembelajaran Dan Biologi Nukleus, 8(2), 364–372. https://doi.org/10.36987/jpbn.v8i2.2733
Sulfahri, Amin, M., Sumitro, S. B., & Saptasari, M. (2016). Bioethanol production from algae Spirogyra hyalina using Zymomonas mobilis. Biofuels, 7(6), 621–626. https://doi.org/10.1080/17597269.2016.1168028
Tayyab, M., Noman, A., Islam, W., Waheed, S., Arafat, Y., Ali, F., Zaynab, M., Lin, S., Zhang, H., & Lin, W. (2018). Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Applied Ecology and Environmental Research, 16(1), 225–249. https://doi.org/10.15666/aeer/1601_225249
Tenkolu, G. A., Kuffi, K. D., & Gindaba, G. T. (2022). Optimization of fermentation condition in bioethanol production from waste potato and product characterization. Biomass Conversion and Biorefinery, June. https://doi.org/10.1007/s13399-022-02974-4
Tesfaw, A., & Assefa, F. (2014). Current Trends in Bioethanol Production by Saccharomyces cerevisiae : Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization . International Scholarly Research Notices, 2014, 1–11. https://doi.org/10.1155/2014/532852
Tse, T. J., Wiens, D. J., & Reaney, M. J. T. (2021). Production of bioethanol—a review of factors affecting ethanol yield. Fermentation, 7(4), 1–18. https://doi.org/10.3390/fermentation7040268
Tuaputty, H. (2020). Yeast Concentration, pH, and Fermentation Time on the Production and Concentration of Bioethanol Made from Sargassum crassifolium as a Renewable Energy Source. Jurnal Biology Science & Education, 9(1), 1–10.
Utama, G. L., Sidabutar, F. E. E., Felina, H., Wira, D. W., & Balia, R. L. (2019). The utilization of fruit and vegetable wastes for bioethanol production with the inoculation of indigenous yeasts consortium. Bulgarian Journal of Agricultural Science, 25(2), 264–270.
Utama, G. L., Tyagita, Krissanti, I., Wira, D. W., & Balia, R. L. (2019). Stress tolerance Yeast strain from papaya wastes for bioethanol production. International Journal of GEOMATE, 17(61), 97–103. https://doi.org/10.21660/2019.61.4796
Yao, B. N., Tano, K., Konan, H. K., Bédié, G. K., Oulé, M. K., Koffi-Nevry, R., & Arul, J. (2014). The role of hydrolases in the loss of firmness and of the changes in sugar content during the post-harvest maturation of Carica papaya L. var solo 8. Journal of Food Science and Technology, 51(11), 3309–3316. https://doi.org/10.1007/s13197-012-0858-x
Yusmartini, E. S., Mardwita, M., & Mar domkan, C. (2021). Papaya (Carica papaya l.) flavour profiling. Genes, 12(9). https://doi.org/10.3390/genes12091416za, J. (2020). Bioethanol from Pineapple Peel with Variation of Saccharomyces Cerevisiae Mass and Fermentation Time. Indonesian Journal of Fundamental and Applied Chemistry, 6(3), 103–108. https://doi.org/10.24845/ijfac.v6.i3.103
Zhou, Z., Ford, R., Bar, I., & Kanchana-U
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 I Nengah Muliarta I Nengah, Ni Luh Putu Putri Setianingsih, S.Si., M.Si., Ir. Wayan Sudiarta, MP, Desak Ayu Diah Prawerti, I Kadek Somariana, I Ketut Suwarmadi Putra

This work is licensed under a Creative Commons Attribution 4.0 International License.