Binking Application: Early Detection of Computer Vision Syndrome

Authors

  • Nancy Jeane Tuturoong Universitas Sam Ratulangi

DOI:

https://doi.org/10.55927/eajmr.v2i5.4409

Keywords:

Pandemic COVID-19, Computer Vision Syndrome, Blink Detection

Abstract

Policies regarding the use of gadgets are very necessary at this time, especially during the COVID-19 pandemic, because at this time people inevitably have to be willing to learn and use technology such as gadgets / smartphones in order to meet their respective needs, studying, buying goods, reading news and other things, without a policy in the use of this technology will certainly have a negative impact on users such as Computer Vision Syndrome, this journal aims to determine the impact of Computer Vision Syndrome and also create an eye blink detection program which aims to prevent and detect eye blinks so as to avoid the negative effects of Computer Vision Syndrome such as eye disorders. This research was conducted using four students of the Faculty of Electrical Engineering, Sam Ratulangi University as sample’s data in making this Blink Detection program, the program was made through several references and several improvements until it was finally completed and the program could detect many eye blinks of gadget users and provide warnings to the user.

References

Abidin Suhepy. Jurnal Teknologi Elektronika Deteksi Wajah Menggunakan Metode Haar Cascade Classifier Berbasis Webcam Pada Matlab. Jurusan Teknik Elektro, Politeknik Negeri Ujung Pandang.

Agustine R. RS. Awal Bros. Jangan Remehkan Mata Lelah Akibat Gadget. Diakses 23 Oktober 2020 dari http://awalbros.com/mata/mata-lelah-akibat-gadget/

Perdana A.A , dkk (2013). Jurnal Deteksi Iris Mata dan Perhitungan Kedipan Mata Menggunakan Circular Hough Transform Untuk Mencegah Computer Vision Syndrome. Fakultas Teknik Elektro. Universitas Telkom

Jati.stta.ac.id (2015). Deteksi Obyek Menggunakan Haar Cascade Classifier. Diakses 20 September 2020 dari Santoso Hadi, Harjoko Agus. Jurnal Haar Cascade Classifier dan algoritma Adaboost untuk deteksi banyak wajah dalam ruang kelas. Universitas Gadjah Mada.

Saputro W.E (2013). Jurnal Kesehatan Masyarakat, Hubungan Intensitas Pencahayaan, Jarak Pandang Mata Ke Layer Dan Durasi Penggunaan Komputer Dengan Keluhan Computer Vision Syndrome. Universitas Diponegoro

Sari F.T.A dan Himayani (2018). Medical Journal Faktor Terjadinya Computer Vision Syndrome, (2018). Universitas Lampung

Sajati H, dkk (2017). Jurnal Detrksi Kedipan Mata Pada Video Menggunakan OPEN CV. Sekolah Tinggi Teknologi Adisutjipto

Siloam Hospital (2019). Trik Atasi Computer Vision Syndrome pada Anak. Diakses 18 September 2020 dari https://www.siloamhospitals.com/Contents/NewsEvents/Advertorial/2019/03/16/05/

/TrikAtasi-Computer-Vision-Syndrome-pada-Anak

Syarif M dan Wijanarto W (2015). Jurnal Deteksi kedipan mata dengan haar cascade classifier dan contour untuk password login sistem. Universitas Dian Nuswantoro Semarang.

Tejo M.B, dkk (2020). Jurnal Budaya Media Sosial, Edukasi Masyarakat, dan Pandemi COVID-19. Jurusan Ilmu Budaya Universitas Negeri Surabaya

Ulhaq A, dkk (2020). Jurnal Computer Vision for COVID-19 Control: A Survey. Charles Sturt University https://jati.stta.ac.id/2015/09/deteksi-obyek-menggunakan-haar-cascade.html

Downloads

Published

2023-06-01

How to Cite

Nancy Jeane Tuturoong. (2023). Binking Application: Early Detection of Computer Vision Syndrome . East Asian Journal of Multidisciplinary Research, 2(5), 2203–2214. https://doi.org/10.55927/eajmr.v2i5.4409

Issue

Section

Articles