Modelling Primary Energy by Long Memory Time Series
DOI:
https://doi.org/10.55927/modern.v2i6.6970Keywords:
Long Memory, Primary Energy, ARFIMA, MAPEAbstract
This research employs long memory modeling techniques to analyze and forecast global energy data spanning from 1965 to 2022. Focusing on the ARFIMA (Autoregressive Fractionally Integrated Moving Average) model, the study demonstrates its efficacy in predicting energy consumption trends. The evaluation of forecasting results for the subsequent four years reveals a remarkable Mean Absolute Percentage Error (MAPE) below 5%. This outcome underscores the effectiveness of incorporating long memory components in energy modeling, offering a robust approach for accurate and reliable predictions. The findings contribute to the advancement of energy forecasting methodologies, providing valuable insights for policymakers, energy analysts, and researchers in the pursuit of sustainable and informed energy planning
Downloads
References
Adekoya, O. B. (2020). Modeling of Persistence and Seasonality in Sectoral Energy Consumption in the USA Using Fractionally Integrated Processes: Implications for Economic Policy. Natural Resources Research, 29(4), 2787–2800. https://doi.org/10.1007/s11053-019-09599-x
Andrysiak, T., & Saganowski, Ł. (2015). Network Anomaly Detection Based on ARFIMA Model. Advances in Intelligent Systems and Computing, 313 AISC, 255–261. https://doi.org/10.1007/978-3-319-10662-5_31
Arteche, J., & Robinson, P. M. (1998). SEMIPARAMETRIC INFERENCE IN SEASONAL AND CYCLICAL LONG MEMORY PROCESSES Ã.
Balagula, Y. (2020). Forecasting daily spot prices in the Russian electricity market with the ARFIMA model. Applied Econometrics, 57, 89–101. https://doi.org/10.22394/1993-7601-2020-57-89-101
Berbesi, L., & Pritchard, G. (2023). Modelling Energy Data in a Generalized Additive Model—A Case Study of Colombia. Energies, 16(4). https://doi.org/10.3390/en16041929
Cao, Z., O’Sullivan, C., Tan, J., Kalvig, P., Ciacci, L., Chen, W., Kim, J., & Liu, G. (2019). Resourcing the Fairytale Country with Wind Power: A Dynamic Material Flow Analysis. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b03765
Geweke, J., & Porter-Hudak’, S. (1983). THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS.
Li, D., Robinson, P. M., & Shang, H. L. (2020). Long-Range Dependent Curve Time Series. Journal of the American Statistical Association, 115(530), 957–971. https://doi.org/10.1080/01621459.2019.1604362
Li, D., Robinson, P. M., & Shang, H. L. (2021). Local Whittle estimation of long-range dependence for functional time series. Journal of Time Series Analysis, 42(5–6), 685–695. https://doi.org/10.1111/jtsa.12577
Monge, M., & Gil-Alana, L. A. (2019). Automobile components: Lithium and cobalt. Evidence of persistence. Energy, 169, 489–495. https://doi.org/10.1016/j.energy.2018.12.068
Palma, W. (2007). LONG-MEMORY TIME SERIES Theory and Methods.
Shalalfeh, L., Bogdan, P., & Jonckheere, E. A. (2021). Fractional Dynamics of PMU Data. IEEE Transactions on Smart Grid, 12(3), 2578–2588. https://doi.org/10.1109/TSG.2020.3044903
Silver, S. D., & Raseta, M. (2021). An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data. Empirical Economics, 60(2), 683–699. https://doi.org/10.1007/s00181-019-01757-7
Tokhmpash, A., Hadipour, S., & Shafai, B. (2020). On Analysis of Fractional Order System Identification. https://doi.org/10.0/Linux-x86_64
Wei, W. W. S. (2006). Time series analysis : univariate and multivariate methods. Pearson Addison Wesley.
Zaharia, A., Diaconeasa, M. C., Brad, L., Lădaru, G. R., & Ioanăs, C. (2019). Factors influencing energy consumption in the context of sustainable development. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154147
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gumgum Darmawan, Budhi Handoko
This work is licensed under a Creative Commons Attribution 4.0 International License.