Modelling Primary Energy by Long Memory Time Series

Authors

  • Gumgum Darmawan Universitas Padjadjaran
  • Budhi Handoko Universitas Padjadjaran

DOI:

https://doi.org/10.55927/modern.v2i6.6970

Keywords:

Long Memory, Primary Energy, ARFIMA, MAPE

Abstract

This research employs long memory modeling techniques to analyze and forecast global energy data spanning from 1965 to 2022. Focusing on the ARFIMA (Autoregressive Fractionally Integrated Moving Average) model, the study demonstrates its efficacy in predicting energy consumption trends. The evaluation of forecasting results for the subsequent four years reveals a remarkable Mean Absolute Percentage Error (MAPE) below 5%. This outcome underscores the effectiveness of incorporating long memory components in energy modeling, offering a robust approach for accurate and reliable predictions. The findings contribute to the advancement of energy forecasting methodologies, providing valuable insights for policymakers, energy analysts, and researchers in the pursuit of sustainable and informed energy planning

Downloads

Download data is not yet available.

References

Adekoya, O. B. (2020). Modeling of Persistence and Seasonality in Sectoral Energy Consumption in the USA Using Fractionally Integrated Processes: Implications for Economic Policy. Natural Resources Research, 29(4), 2787–2800. https://doi.org/10.1007/s11053-019-09599-x

Andrysiak, T., & Saganowski, Ł. (2015). Network Anomaly Detection Based on ARFIMA Model. Advances in Intelligent Systems and Computing, 313 AISC, 255–261. https://doi.org/10.1007/978-3-319-10662-5_31

Arteche, J., & Robinson, P. M. (1998). SEMIPARAMETRIC INFERENCE IN SEASONAL AND CYCLICAL LONG MEMORY PROCESSES Ã.

Balagula, Y. (2020). Forecasting daily spot prices in the Russian electricity market with the ARFIMA model. Applied Econometrics, 57, 89–101. https://doi.org/10.22394/1993-7601-2020-57-89-101

Berbesi, L., & Pritchard, G. (2023). Modelling Energy Data in a Generalized Additive Model—A Case Study of Colombia. Energies, 16(4). https://doi.org/10.3390/en16041929

Cao, Z., O’Sullivan, C., Tan, J., Kalvig, P., Ciacci, L., Chen, W., Kim, J., & Liu, G. (2019). Resourcing the Fairytale Country with Wind Power: A Dynamic Material Flow Analysis. Environmental Science and Technology. https://doi.org/10.1021/acs.est.9b03765

Geweke, J., & Porter-Hudak’, S. (1983). THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS.

Li, D., Robinson, P. M., & Shang, H. L. (2020). Long-Range Dependent Curve Time Series. Journal of the American Statistical Association, 115(530), 957–971. https://doi.org/10.1080/01621459.2019.1604362

Li, D., Robinson, P. M., & Shang, H. L. (2021). Local Whittle estimation of long-range dependence for functional time series. Journal of Time Series Analysis, 42(5–6), 685–695. https://doi.org/10.1111/jtsa.12577

Monge, M., & Gil-Alana, L. A. (2019). Automobile components: Lithium and cobalt. Evidence of persistence. Energy, 169, 489–495. https://doi.org/10.1016/j.energy.2018.12.068

Palma, W. (2007). LONG-MEMORY TIME SERIES Theory and Methods.

Shalalfeh, L., Bogdan, P., & Jonckheere, E. A. (2021). Fractional Dynamics of PMU Data. IEEE Transactions on Smart Grid, 12(3), 2578–2588. https://doi.org/10.1109/TSG.2020.3044903

Silver, S. D., & Raseta, M. (2021). An ARFIMA multi-level model of dual-component expectations in repeated cross-sectional survey data. Empirical Economics, 60(2), 683–699. https://doi.org/10.1007/s00181-019-01757-7

Tokhmpash, A., Hadipour, S., & Shafai, B. (2020). On Analysis of Fractional Order System Identification. https://doi.org/10.0/Linux-x86_64

Wei, W. W. S. (2006). Time series analysis : univariate and multivariate methods. Pearson Addison Wesley.

Zaharia, A., Diaconeasa, M. C., Brad, L., Lădaru, G. R., & Ioanăs, C. (2019). Factors influencing energy consumption in the context of sustainable development. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154147

Downloads

Published

2023-12-08

How to Cite

Darmawan, G., & Budhi Handoko. (2023). Modelling Primary Energy by Long Memory Time Series. Indonesian Journal of Contemporary Multidisciplinary Research, 2(6), 1309–1320. https://doi.org/10.55927/modern.v2i6.6970